期刊文献+

基于图割的目标提取实时修正算法 被引量:5

Real-time correcting algorithm of extracted contour based on graph cuts
下载PDF
导出
摘要 对目标提取结果进行后期修正是进一步提高提取精度的重要举措。针对在前期目标提取算法框架内实现修正困难、局限较多、难于推广等不足,提出了一种基于图割理论的独立修正算法。首先通过人机交互选定修正区域,然后映射成s-t网络,最后运用最大流/最小割算法对s-t网络进行切割得到修正后的目标轮廓。实验表明,该方法不仅操作简便,实时响应,不破坏已有的正确提取结果;而且参数少,抗噪能力强,适用于一般的基于轮廓的目标提取。 Post correcting of the extracted contour is an important measure to further improve extraction accuracy. Aiming at the difficulty and limitation of correcting implementation and generalization within the corresponding extracting algorithm framework, an independent correcting algorithm based on graph cuts was proposed. At first, the region to be corrected was obtained by human-computer interaction. Then the region was mapped into an s-t network. Finally a corrected object contour was obtained using the max-flow/min-cut algorithm. The experimental results show that the simplification, real-time responding, and strong anti-noise ability of the proposed approach are suitable for general contour-based object extraction.
出处 《计算机应用》 CSCD 北大核心 2008年第12期3116-3119,3122,共5页 journal of Computer Applications
基金 陕西省自然科学基金资助项目(2005A12) 陕西师范大学研究生培养创新基金资助项目(2008CXS025)
关键词 目标提取 图割 提取修正 组舍优化 object extraction graph cuts extraction correcting combinatorial optimization
  • 相关文献

参考文献10

  • 1KASS M, WITKIN A, TERZOPOULOS D. Snakes: Active contour models [J]. International Journal of Computer Vision, 1988, 1(4) : 321 -331.
  • 2MUMFORD D, SHAH J. Boundary detection by minimizing,functions [ C] // Proceedings of Conference Computer Vision and Pattern Recognition. San Francisco:[s. n.], 1985:41-44.
  • 3OSHER S, SETHIAN J A. Fronts propagating with curvature dependent speed: Algorithms based on Hamihon-Jacobi formulation [J]. Journal of Computational Physics, 1988, 79(1) : 12-49.
  • 4BOYKOV Y, JOLLY M P. Interactive graph eats for optimal boundary and region segmentation of objects in N-D images [ C]// Proceedings of Eighth IEEE International Conference on Computer Vision. Washington: IEEE, 2001,1: 105-112.
  • 5XU N, AHUJA N, BANSAL R. Object segmentation using graph cuts based active contours [ J]. Computer Vision and Image Understanding, 2007, 107(3): 210-224.
  • 6BOYKOV Y, FUNKA-LEA G. Graph cuts and efficient N-D image segmentation [ J]. International Journal of Computer Vision, 2006, 70(2) : 109 - 131.
  • 7ROTHER C, KOLMOGOROV V, BLAKE A. Grabcut: Interactive foreground extraction using iterated graph cuts [ J]//ACM Transactions on Graphics, 2004, 23(3): 309-314.
  • 8KOLMOGOROV V, CRIMINISI A, BLAKE A, et al. Bi-layer segmentation of binocular stereo video [ C]// IEEE Computer Society Conference of Computer Vision and Pattern Recognition. Washington: IEEE, 2005, 2:1186 - 1193.
  • 9JUAN O, BOYKOV Y. Active graph cuts [ C]// IEEE Conference on Computer Vision and Pattern Recognition, Washington: IEEE, 2006, 1: 1023- 1029.
  • 10COOK W J, CUNNINGHAM W H, PULLEYBLANK W R, et al. Combinatorial optimization [ M]. New York: John Wiley & Sons Press, 1998.

同被引文献35

  • 1罗涛华.基于自适应阈值的储粮害虫图像分割算法[J].武汉工业学院学报,2006,25(1):5-8. 被引量:8
  • 2范新南,郭建甲.一种新的自适应工程图像分割算法[J].计算机测量与控制,2006,14(3):395-397. 被引量:9
  • 3吴亚东,孙世新,张红英,韩永国,陈波.一种基于图割的全变差图像去噪算法[J].电子学报,2007,35(2):265-268. 被引量:9
  • 4赵娟.基于Gabor小波和支持向量机的储粮害虫图像分割[J].电脑与信息技术,2007,15(3):37-39. 被引量:4
  • 5Kass M, Witkin A, Terzopoulos D. Snake: Active contour models [J]. International Journal of Computer Vision, Corfu, 1988, 1 (4): 321-331.
  • 6Xu C, Prince J L. Gradient vector flow: A new external force for snake [A]. IEEE Computer Society Conference on computer vision and pattern recognition[C]. Washington, DC : IEEE Computer society, 1999, 66-71.
  • 7Boykov Y, Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images [A]. IEEE International Conference on Computer Vision and Pattern Recognition [C]. 2004, 731-738.
  • 8Boykov Y, Jolly M P. An Experimental Comparison of Min-Cut/ Max-Cut Algorithms for Energy Minimization in Computer Vision [J]. IEEE Transactions on Pattern Analysis and Machine Intelligent, 2004, 1124-1137.
  • 9Lowe D G. Distinctive image features from scale- invariant keypoints[J]. Journal of Computer Vision, 2004, 60 (2): 91 - 110.
  • 10Takagi M, Fujiyoshi H. Road Sign Recognition using SIFT feature [A]. Symposium on Sensing via Image Information [C]. LD2-06, 2007.

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部