期刊文献+

一种新的基于分水岭变换的聚类分析算法 被引量:2

New clustering algorithm based on watershed transform
下载PDF
导出
摘要 提出了一种基于分水岭变换的聚类分析算法。该算法首先根据数据的密度信息把二维数据样本集转化成数字灰度图像,然后对该灰度图像进行分水岭变换,根据变换结果得到聚类结果。实验结果表明,该算法在准确度方面与传统的K-means算法相当,是一种完全无监督的聚类算法。 Based on watershed transform, a new clustering analysis algorithm was proposed: In this algorithm, the 2- dimension data set was converted to digital grey image according to its density at first. And watershed transform was performed on the grey image, and then the clustering results were got. The result indicates that the accuracy is slightly worse than that of K-means algorithm, but it has the capability of recognizing the number of clusters automatically.
出处 《计算机应用》 CSCD 北大核心 2008年第12期3240-3243,共4页 journal of Computer Applications
关键词 分水岭变换 聚类 K-MEANS算法 watershed transform clustering K-means algorithm
  • 相关文献

参考文献6

  • 1JAIN A K, MURTY M N, FLYNN P J. Data clustering: A review [ J]. ACM Computing Surveys, 1999, 31 (3) : 264 - 323.
  • 2SOILLE V L. Watersheds in digital spaces: An efficient algorithm based on immersion simulations [ J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13 (6) :583 -598.
  • 3ROERDINK J B T M, MEIJSTER A. The watershed transform: Definitions, algorithms and parallelization strategies [ J]. Fundamenta Informatieae, 2001,41:187 - 228.
  • 4BICEGO M, CRISTANI M, FUSIELLO A, et al. Watershed-based unsupervised clustering [C]//EMMCVPR 2003: Energy Minimization Methods in Computer Vision and Pattern Recognition, LNCS 2683. Berlin: Springer-Verlag, 2003:83-94.
  • 5GERAUD T, STRUB, P Y, DARBO J. Color image segmentation based on automatic morphological clustering [ C]// IEEE Proceedings of International Conference on Image Processing. Washington: IEEE, 2001,3: 70-73.
  • 6DUBES R J A. Algorithm for clustering data[ M]. New Jersey: Prentice Hall, 1988.

同被引文献24

  • 1张鲲,王士同.分水岭算法和基于MRF的层次聚类相结合的混合无监督图像分割算法[J].计算机应用,2007,27(3):673-676. 被引量:7
  • 2倪茂树,林鸿飞.基于关联规则和极性分析的商品评论挖掘[C]//第三届全国信息检索与内容安全学术会议,2007:635-642.
  • 3Pang B, Lee L, Vaithyanathan S. Thumb up? Sentiment classification using machine learning techniques[C]// Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing(EMNLP). 2002:79-86.
  • 4Turney P D. Thumbs up or Thumbs down? Semantic orientation applied to unsupervised classification of reviews[C]// Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics(ACL). 2002:417-424.
  • 5Liu Bing. Sentiment analysis and subjectivity [M]// Handbook of Natural Language Processing(Second Edition). 2010:Chapter 28.
  • 6宇缨. Web文本观点挖掘综述[J]. 计算机科学, 2010,37(10A):122-126.
  • 7Pang B, Lee L. Opinion mining and sentiment analysis[J]. Foundations and Trends in Information Retrieval, 2008,2(1-2):1-135.
  • 8Wiebe J, Bruce R F, O’Hara T P. Development and use of a gold standard data set for subjectivity classifications[C]// Proceedings of the Association for Computational Linguistics(ACL). 1999:246-253.
  • 9Popescu A M,Etzioni O. Extracting product opinions from reviews[C]// Proceeding of the Human Language Technology Conference and the Conference on Empirical Methods in Natural Language Processing(HLT/EMNLP),2005. 2005:339-346.
  • 10Ellen Riloff, Janyce Wiebe, Theresa Wilson. Learning subjective nouns using extraction pattern bootstrapping[C]// Proceedings of the 7th Conference on Natural Language Learning. 2003:25-32.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部