期刊文献+

微生物燃料电池性能的影响因素研究 被引量:4

Study on the Influence Factors to the Performance of Microbial Fuel Cells
下载PDF
导出
摘要 在微生物燃料电池中,氧化还原介体可以有效的促进电子从微生物细胞内传递到电池阳极上,提高电池的能量转化率。在不加介体情况下,普通变形菌电池性能优于大肠杆菌。对微生物和氧化还原介体的组合进行研究,结果显示,普通变形菌和硫堇的组合极化曲线趋于平坦,性能比较稳定,功率可达到128.8mW/m2。另外,在加入硫堇后,电池内阻由1724Ω降为200Ω,内阻降幅为88.4%。当0.25mmol/L Fe(Ⅲ)EDTA和0.5mmol/L硫堇混合时,功率可达169.3mW/m2,优于单介体微生物燃料电池。 In microbial fuel cells (MFC), redox mediator can promote the transfer of electrons from microbes to the surface of electrode and enhance converting efficiency of energies. Proteus vulgaris to the performance of MFC is superior to E.coli without the mediator. The combinations of microbes and mediators were studied, and the results shown that the polarization curve of microbial fuel ceU with combination of proteus vulgaris and thionine was smooth and stable, the maximal output power reached 128.8mW/m^2. Otherwise, the interior resistance of MFC decreased from 1724ft to 200Ω within thionine, the percentage is 88.4%. The performances of MFCs with the combination of thionine and ferric chelates as co-mediators was better than that With single mediator, and the Output power reached 169.3mW/m^2 under the conditions of 0.25mmol/L ferric chelates and 0.5mmol/L thionine.
出处 《中国农学通报》 CSCD 2008年第11期97-102,共6页 Chinese Agricultural Science Bulletin
基金 北京市优秀人才培养资助项目(20071D1600300392) 北京理工大学基础研究基金(20070642001)。
关键词 微生物燃料电池 氧化还原介体 普通变形菌 硫堇 Fe(Ⅲ)EDTA microbial fuel cells, mediator, Proteus vulgaris, thionine, Fe(Ⅲ)EDTA
  • 相关文献

参考文献14

  • 1Komeel R,Willy V.Microbial fuel cells: novel biotechnology for energy generation[J].TRENDS in Biotechnol,2005,23(6):291-298.
  • 2Bond D R,Holmes D E,Tender L M,et al.Electrode reducing microorganisms that harvest energy from marine sediment [J].Science, 2002,295:483-485.
  • 3Kim H J,Park H S,Hyun M S,et al.A mediator-less microbial fuel cell using a metal reducing bacterium, ShewaneUa putrefaciens [J].Enzyme and Microbial Technology,2002,30:145-152.
  • 4Kim N,Choi Y,Jung S.Effect of initial carbon sources on the performance of microbial fuel ceils containing proteus vulgaris[J].Biotechnol Bioeng,2000, 70:109-113.
  • 5Tanaka K,Vega C A, Tamamushi R.Thionine and ferric chelate compounds as coupled mediators in microbial fuel cells [J].Bioelectrochem Bioenerg, 1983,11:289-294.
  • 6Logan B E,Hamelers B,Rozendal R,et al.Microbial fuel cells: Methodology and Technology [J].Environ Sci Technol,2006,40: 5181-5192.
  • 7Cheng S A,Liu H,Logan B E.Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing[J].Environ.Sci.Technol,2006,40:2426-2432.
  • 8梁鹏,范明志,曹效鑫,黄霞,王诚.微生物燃料电池表观内阻的构成和测量[J].环境科学,2007,28(8):1894-1898. 被引量:118
  • 9詹姆斯,安德鲁.燃料电池系统-原理,设计,应用[M].北京:科学出版社,2006:35-52.
  • 10Delaney G M,Mason J R. Electron-transfer Coupling in Microbial Fuel Cells 2.Performance of Fuel Cells Containing Selected Microorganism- Mediator-Substrate Combinations[J].Chem Tech Biotechnol, 1984,34B,13-27.

二级参考文献17

  • 1莫志军,胡林会,朱新坚.燃料电池广义内阻的在线测量[J].电源技术,2005,29(2):95-98. 被引量:13
  • 2詹姆斯,安德鲁..燃料电池系统--原理,设计,应用[M]..北京:科学出版社,,2006..35-42..
  • 3Wagner N,Schnurnberger W,Muller B,et al.Electrochemical impedance spectra of solid-oxide fuel cells and polymer membrane fuel cells[J].Electrochimica Acta,1998,43(24):3785 - 3793.
  • 4Rabaey K,Verhaege M.Microbial fuel cells:novel biotechnology for energy generation[J].Trends in Biotechnology,2005,23(6):291 - 298.
  • 5Logan B E.Simultaneous wastewater treatment and biological electricity generation[J].Water Science and Technology,2005,52(1-2):31 - 37.
  • 6Cheng S H,Liu H,Logan B E.Power Densities Using Different Cathode Catalysts (Pt and CoTMPP) and Polymer Binders (Nafion and PTFE) in Single Chamber Microbial Fuel Cells[J].Environmental Science Technology,2006,40:364 - 369.
  • 7Cheng S H,Liu H,Logan B E.Increased performance of singlechamber microbial fuel cells using an improved cathode structure[J].Electrochemistry Communications,2006,8:489-494.
  • 8Rabaey K,Boon N,Siciliano S D,et al.Biofuel cells select for microbial consortia that self-mediate electron transfer[J].Applied and Environmental Microbiology,2004,70:5373 - 5382.
  • 9Cheng S A,Liu H,Logan B E.Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing[J].Environmental Science Technology,2006,40:2426- 2432.
  • 10Aelterman P,Rabaey K,Pham H T,et al.Continuous Electricity Generation at High Voltages and Currents Using Stacked Microbial Fuel Cells[J].Environmental Science Technology,2006,40:3388-3394.

共引文献117

同被引文献48

  • 1曹效鑫,梁鹏,黄霞.“三合一”微生物燃料电池的产电特性研究[J].环境科学学报,2006,26(8):1252-1257. 被引量:66
  • 2黄霞,范明志,梁鹏,曹效鑫.微生物燃料电池阳极特性对产电性能的影响[J].中国给水排水,2007,23(3):8-13. 被引量:70
  • 3黄霞,梁鹏,曹效鑫,范明志.无介体微生物燃料电池的研究进展[J].中国给水排水,2007,23(4):1-6. 被引量:46
  • 4李少华,杜竹玮,祝学远,刘巍,傅德贤,李浩然.Rhodoferax ferrireducens微生物燃料电池中钒化合物的催化性能[J].过程工程学报,2007,7(3):589-593. 被引量:4
  • 5LOGAN B E. Exoelectrogenic bacteria that power microbial fu el cells[J]. Nature Review Microbiology, 2009,7(5) : 375-381.
  • 6PANT D, BOGAERT G V, DIELS L, et al. A review of the substrates used in microbial fuel cells(MFCs) for sustainable energy production[J]. Bioresoure Technology, 2010, 101 (6) 1533-1543.
  • 7LOGAN B E. Scaling up microbial fuel cells and other bioelee tro chemical systems[J]. Applied Microbiology Biotechnology, 2010,85(6) :1665-1671.
  • 8LIU Hong, CHENG Shaoan, LOGAN B E. Production of elec- tricity from acetate or butyrate in a single hamber microbial fu- el cell[J]. Environmental Science and Technolgy, 2005,39 (2).
  • 9CHAUDHURI S K, LOVLEY D R. Electricity generiation by direct oxidation of glucose in mediatorless microbial fuel cells [J].Nature Biotechnoiogy,2003,21(9) : 1229-1232.
  • 10BOND D R, HOLMES D E, TENDER L M, et al. Electrode-re- ducing microorganisms that harvest energy from marine sedi- ments[J]. Science,2002,295(5554) :483-485.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部