期刊文献+

统一混沌系统反馈同步及在保密通信中的应用 被引量:1

Switching Manifold Nolinear Feedback Control for the Synchronization of Chaotic System
下载PDF
导出
摘要 基于非线性系统的状态线性化理论,设计了一种新的统一混沌系统同步控制器,实现了加密信息信号准确的恢复。首先通过坐标变换,将驱动系统和响应系统分别转化为类规范型系统,然后对两个类规范型系统构造误差方程。根据线性系统极点配置方法设计反馈控制器,从而实现两个混沌系统全部状态同步。进而,在发送端用多个混沌信号对信息信号进行掩盖后传送出去,在接收端对混沌掩盖信号进行解密从而恢复出信息信号。最后进行数字仿真,仿真结果验证了该方法的有效性。 Based on state linearization theory of nonlinear system, a new controller to synchornize unified chaotic system was designed, which realized the restoration of encrypted signal accurately. First of all, through coordinate transformation, the driver system and the reponser system were transformed into canonical form systems, and then in term of two canonical form system, the state error equation was constructed. Through pole assignment of linear system, the feedback controller was designed. Then full states of the two chaotic systems were synchronized. Furthermore, the transmitted information signal was masked by more than one chaotic signal in transmitter, then the chaotic masked signal is decrypted to restore the information signal. Finally, numerical simulation is carried out, and the simulation results illustrate the effectiveness of the proposed method.
出处 《计算机仿真》 CSCD 2008年第11期134-136,153,共4页 Computer Simulation
基金 国家自然科学基金(60464001) 广西自然科学基金(0640171)
关键词 状态线性化 混沌同步 极点配置 保密通信 State linearization Chaotic synchronization Pole assignment Secure communication
  • 相关文献

参考文献8

  • 1J Lu, X Wu, J . Synchronization of a unified chaotic system and the applocation in secure eommunication [ J ]. Phys Lett A. 305, 2002. 365 - 370.
  • 2T L Liao and N S Huang. An observer - based approach for chatic synchronization with applications to secure communications [ J ]. IEEE Transactions on circuits and systems:fundamental theory and applications. 1999,9 (46) : 1144 - 1150.
  • 3L M Pecora, T L Carroll. Synchronization in chaotic systems [ J ]. Phys Rev Lett. 1990,64 ( 8 ) : 821 - 824.
  • 4H N Agiza, M T Yassen. Synchronization of and chen chaotic systems using active control[ J]. Phys. Lett. A. 278,2000. 191 -197.
  • 5Y Wang, Z H Guan, H O Wang. Feedback an adaptive control for the synchronization of Chen system via a single variable[ J]. Phys Lett A. 312,2003.34 -40.
  • 6J H Park. Adaptive synchronization of Rossler system with uncertain parameters [ J ]. Chao Solitons & Fractals. ( 25 ) 2005. 201 - 206.
  • 7M Y Chen, D H Zhou, Y Shang. synchronizing a class of uncertain chaotic systems[J]. Phys Lett A. 337,2005. 333 -338.
  • 8J L, G Chen, D Cheng, S Celikovsky. Bridge the gap between the Lorenz system and Chen system [ J ]. Int. J. of Bifurcation and Chaos. 2002,12 ( 12 ) :2917 - 2926.

同被引文献28

  • 1单梁,李军,王执铨.基于统一混沌系统的广义同步[J].信息与控制,2004,33(6):689-693. 被引量:5
  • 2闵富红,王执铨.统一混沌系统的耦合同步[J].物理学报,2005,54(9):4026-4030. 被引量:41
  • 3Agiza H N, Yassen M T. Synchronization of Rossler and Chen chaotic dynamical systems using active control [J]. Phys. Lett. A. , 2001, 278 (4) : 191 -197.
  • 4Ott E, Grebogi C, Yorke J A. Controlling chaos [J]. Phys. Rev. Lett. , 1990, 64 (11): 1196-1199.
  • 5Pecora L M, Carroll T L. Synchronization in chaotic systems [J]. Phys. Rev. Lett., 1990, 64 (8): 821-824.
  • 6Chen S H, Ltl J H. Synchronization of an uncertain unified chaotic system via adaptive control [J]. Chaos, Solitons and Fractals, 2002, 14 (4):643-647.
  • 7Itoh M, Yang T, Chua L O. Conditions for impulsive syn- chronization of chaotic and hyperchaotic systems [ J]. Int. J. Bifurcat. Chaos, 2001, 11 (2):551-560.
  • 8Wang G, Yu X, Chen S. Chaos Control, Synchronization and Its Application [ M ]. Beijing: National Defense Industry Publishing House, 2001.
  • 9Wu X Q, Li J A. Parameter identification and backstepping control of uncertain Lu system [ J ]. Chaos, Solitons and Fractals, 2003, 18 (4): 721-729.
  • 10Yang L X,Chu Y D,Zhang J G,et al. Chaos synchronization in autonomous chaotic system via hybrid feedback control [ J ]. Chaos, Solitons and Fractals ,2009,41 ( 1 ) : 214 - 223.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部