期刊文献+

SSC-SDC双相复合陶瓷透氧膜的电学性能及氧渗透性能研究 被引量:1

The Electrical and Oxygen Permeable Properties of SSC-SDC Dual-phrase Composite Membrane
下载PDF
导出
摘要 文章研究了SDC体积含量分别为65%、55%、45%、35%、20%、0的Ce0.8Sm0.2O2-δ(SDC)/Sm0.5Sr0.5CoO3-δ(SSC)SDC/SSC双相复合陶瓷透氧膜的电学及氧渗透性能。XRD测量结果表明SDC与SSC两相之间没有明显反应。随SDC体积分数的增加,双相复合膜电导率呈降低趋势。氧渗透测量结果显示SDC体积分数为35%时氧渗透速率最大。在810℃,膜厚为1mm,氧分压梯度为0.21atm/0.005atm时氧渗透率达到了1.31×10-7mo·lcm-2·s-1。 The electrical and oxygen permeable properties of SSC-SDC dual-phrase composite membrane with different SDC volume ratios are studied. It is found that the dense composite can be obtained by sintering at elevated temperatures without significant reaetions between the two constituting phases as detected by XRD. As the increasing of SDC, the electrical conductivity exhibits a lowering trend. The SSC/SDC (65/35) composite membrane possesses the highest oxygen permeability, and a flux of 1.31 × 10^-7mol·cm^-2·s^-1 is observed for a 1.0ram thick membrane at 810℃ and under a small oxygen partial pressure gradient of 0.21 atm/0.005atm.
作者 吴修胜
出处 《安徽建筑》 2008年第6期152-153,共2页 Anhui Architecture
关键词 双相复合膜 电导率 氧渗透 dual-phrase composite membrane electrical conductivity oxygen permeation
  • 相关文献

参考文献4

  • 1H.Y.Tu, Y.Takeda, N.lmanishi, O.Yamamoto.La1-xSrxCoO3 (Ln=Sm, Dy)for the electrodes of solid oxide cells[J].Solid State Ionics, 100(1997)283.
  • 2C.R Xia, W.Rauch, F.L.Chen, M.L.Liu, Solid State Ionics, 149(2002): 11.
  • 3Jianxin Yi, Yanbo Zuo, Wei Liu, Louis Winnubst and Chusheng Chen, Oxygen permeation through a Ce0.8Sm0.2O2.δ-La0.8Sr0.2CrO3-δdual-phasecomposite membrane[J].Journal of Membrane Science, 280(2006)849.
  • 4H.J.M. Bowwmee.ster, A.J. Bruggraaf.Fundermentals of Inorganic Mere brane Science and Technology.Chapler 10, Elsevier Science B.V.1996.

同被引文献70

  • 1胡捷,贾庆超,范玉山,郭益群,胡行.混合导体透氧膜用于甲烷部分氧化制合成气研究进展[J].天然气化工—C1化学与化工,2006,31(3):61-66. 被引量:2
  • 2金万勤,徐南平.混合导体透氧膜材料的设计与应用[J].化工进展,2006,25(10):1143-1151. 被引量:5
  • 3Zeng P Y, Ran R, Chen Z H, Gu H X, Shao Z P, Liu S M. AIChE J., 2007, 53:3116--3124.
  • 4Martynezuk J, Liang F, Arnold M, gepelak V, Feldhoff A. Chem. Mater., 2009, 21:1586---1594.
  • 5Yaremchenko A A, Kharton V V, Valente A A, Snijkers F M M, Cooymans J F C, Luyten J J, Marques F M B. J. Membr. Sci. , 2008, 319:141--148.
  • 6Harada M, Domen K, Hara M, Tatsumi T. Chem. Lett. , 2006, 35 : 968--969.
  • 7Gu X H, Jin W Q, Chen C L, Xu N P, Shi J, Ma Y H. AIChE J. , 2002, 48:2051--2060.
  • 8Li Y, Zhao H L, Xu N S, Shen Y N, Lu X G, Ding W Z, Li F S. J. Membr. Sci. , 2010, 362:460--470.
  • 9Shao Z P, Yang W S, Cong Y, Dong H, Tong J H, Xiong G X. J. Membr. Sci. , 2000, 172:177--188.
  • 10Teraoka Y, Zhang H M, Furukawa S, Yamazoe N. Chem. Lett., 1985, 14:1743--1746.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部