期刊文献+

基于椭圆曲线的前向安全签密方案 被引量:3

Forward-secure signcryption scheme based on ECC cryptography
下载PDF
导出
摘要 签密可在同一逻辑步中同时完成签名和加密两项功能,其代价远小于"先签名后加密"的传统实现方式,是构造信息安全系统的有效工具。研究了IEEEP1363标准定义的椭圆曲线签名体制,指出了该体制存在的两个安全缺陷:不能为签名提供保密服务、密钥不具有前向安全性。结合椭圆曲线密钥交换协议和签密的思想,构造了一个具有前向安全性的签密方案。该方案以一般椭圆曲线密码系统为基础,可以同时实现签名、加密以及对称密钥建立等功能。该方案的密钥建立过程是前向安全的,签名是前向安全的和不可伪造的。 Signcryption is a new cryptographic primitivewhich simultaneously provides both confidentiality andauthenticity. Compared with the cases where the encryption and signature operations are simply sequentially composed, signcryption can achieve significant savings both in computational and communication overhead. The security of elliptic curve cryptography digital signature scheme described in IEEE P1363 is studied, and two security drawbacks of that scheme is pointed out: It can't protect the confidence of the signature and it can't provide forward security. In order to conquer those drawbacks, based on elliptic curve cryptography key agreement protocols and the method of signcryption, a forward-secure signcryption scheme is proposed, which can apply to a common cryptography system of ECC. Symmetrical key agreement, digital signature and encryption can be realized once the scheme is implemented. Finally, the scheme is proved has lots of secure characters, which are key agreement forward-secure, signature forward-secure and resistant to forging attack.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第22期5732-5734,共3页 Computer Engineering and Design
基金 国家自然科学基金项目(60473021) 河南省自然科学基金项目(511010900)
关键词 椭圆曲线密码 前向安全 签密 密钥管理 加密 elliptic curve cryptography forward security signcryption key management encryption
  • 相关文献

参考文献9

二级参考文献26

  • 1[1]Miller V. Uses of elliptic curves incryptography[A]. Williams H C eds. Advances in Cryptology-CRYPTO′85 Proceedings, LNCS218[C].Berlin: Springer-Verlag, 1986. 417-426.
  • 2[2]T ElGamal. A public key cryptosystem andsignature scheme based on discrete logarithm[J].IEEE Trans.,1985,IT-31(4):469-472.
  • 3[3]L Ham. New digital signature scheme based on discrete logarithm[J]. Electronics Letters,1994,30(5):396-398.
  • 4[4]Miyaji A. Elliptic curves over Fp suitable for cryptosystems[A].Advances in Cryptology-AUSCRYPT′92 Proceedings,LNCS718[C].Berlin:Springer-Verlag, 1993.479-491.
  • 5[5]Menezes A, Okamoto T, Vanstone S. Reducing elliptic curve logarithms to logarithms in a finite field[J].IEEETIT,1993,39(5):1639-1646.
  • 6[1]Chaum D, Van Heyst E. Group signatures. In D. W. Davies, editor, Proc. of Eurocrypt'91,LNCS, Springer-Verlag, 1992, vol.547: 257-265.
  • 7[2]Camenisch J, Stadler M. Efficient group signature schemes for large groups. In Advances in Cryptology-CRYPTO'97, LNCS, Springer-Verlag, 1997, vol.1296: 410-424.
  • 8[3].Cramer R, Damgard I, Schoenmakers B. Proofs of partial knowledge and simplified design of witness hiding protocols. In Y. G. Desmedt, editor, CRYPTO'94, LNCS, Springer-Verlag, 1994,vol.839: 174-187.
  • 9[4]Abe M, Ohkubo M, Suzuki K. 1-out-of-n signatures from a variety of keys. Asiacrypt'2002, LNCS,Berlin, Heidelberg, Springer-Verlag, 2002, vol.2501: 415-423.
  • 10[5]Rivest R L, Shamir A, Tauman Y. How to leak a secret. In C. Boyd, editor, in Proc. of Asiacrypt'01, LNCS, Springer-Verlag, 2001, vol.2248: 552-565.

共引文献45

同被引文献17

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部