期刊文献+

互斥关系模式挖掘算法研究 被引量:4

Study on algorithm for mining exclusive relation patterns
下载PDF
导出
摘要 序列模式挖掘是数据挖掘的一个重要领域,结构关系模式挖掘是在序列模式挖掘基础上提出的一种新的挖掘任务。重点对结构关系模式的一个重要分支——互斥关系模式进行了研究,在给出与互斥关系模式相关概念的基础上讨论了互斥关系模式挖掘的两种算法,即基本检测法和分类检测法。实验结果表明,两种算法都是有效的,在序列模式数量很大时,分类检测法的挖掘效率高于基本检测法。结构关系模式挖掘和序列模式挖掘一样在实际应用中有着重要的价值,一些在序列模式挖掘过程中不能发现的隐藏模式将在结构关系模式中被发现,互斥关系模式的研究将进一步为结构关系模式挖掘理论的完善提供支持。 Sequential patterns mining is an important area of data mining. Structural relation pattern mmmg is a new Kind of data mining task which is proposed based on sequential pattern mining. Exclusive relation pattern is one of important forms of structural relation pattern, based on research of some definitions related to exclusive relation patterns, two algorithms for mining exclusive relation pattern are proposed, one is basic check method, the other is classification method. The experimental results indicate that the two algorithms are useful, and when the number of the sequential patterns is lager, classification method is more efficient. The structure relation pattern mining is very valuable in practical applications same as sequential Pattern mining. Some conclusions which cannot be given by sequential pattern mining is obtained through the structure relation pattern mining, and some hidden relations among sequential pattern is found. The further study on exclusive relation patterns will provide support for the perfect of structural relation patterns theory.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第22期5776-5779,共4页 Computer Engineering and Design
基金 辽宁省教育厅科学研究计划基金项目(05L338)
关键词 结构关系模式 互斥度 互斥关系模式 支持度 序列 structural relation pattern exclusion exclusive relation pattern support sequence
  • 相关文献

参考文献9

  • 1Ayres J,Flannick J,Gehrke J.Sequential pattern mining using a bitmap representation [J]. Knowledge Discovery and Data Mining,2002,12(6):429-435.
  • 2Lu J,Adjei O,Chen W R, et al.Post sequential pattern mining: A new method for discovering structural patterns [C]. Beijing, China:Proceedings of the 2nd International Conference on Intelligent Information Processing,2004:239-250.
  • 3Mannila H Meek.Global partial orders from sequential data[C]. Sixth Annual Conference on Knowledge Discovery and Data Mining(KDD,2000),2000:161-168.
  • 4Inokuchi A,Washio T, Motoda H.An apriori-based algorithm for mining frequent substructures from graph data [C]. PDKK'00, 2000:13-23.
  • 5Lu J, Adjei O, Chen W R, et al.An apriori-based algorithm for mining concurrent branch pattern[C]. Romania:Proc of the 4th RoEduNet International Conference:Education/Training and Information/Communication Technologies-RoEduNet, 2005:183- 189.
  • 6Lu J,Adjei O,Chen W R, et al.Large candidate branches-based method for mining concurrent branch pattem[C]Studia Univ Babes-Bolyai, Informatica,2005:49-57.
  • 7Antonie M L,Zaiiane O R.Mining positive and negative association rules: An approach for confined rules[J] Proc Intl Conf on Principles and Practice of Knowledge Discovery in Databases, 2004:27-38.
  • 8Wu Xindong,Zhang Chengqi,Zhang Shichao.Efficient mining of both positive and negative association rules [J]. ACM Transactions on Information Systems,2004(7):381-405.
  • 9Pei J,Han J,Mortazavi B.Prefixspan:Mining sequential patterns efficiently by prefix-projected pattern growth[J].Data Engineering,2001,8(4):215-224.

同被引文献15

  • 1吕静,王晓峰,Osei Adjei,Fiaz Hussain.序列模式图及其构造算法[J].计算机学报,2004,27(6):782-788. 被引量:16
  • 2李超,余昭平.基于矩阵的Apriori算法改进[J].计算机工程,2006,32(23):68-69. 被引量:43
  • 3LU J,ADYEI O,CHEN W R,et al.Post Sequential Pattern Mining:A New Method for Discovering Structural Patterns[C].Beijing:Springer Press,2004:239-250.
  • 4LU J,ADJEI O,WANG X F,et al.Sequential Patters Modelling and Graph Pattern Mining[C].Perugia,Italy:IEEE Computer Society Press,2004:755-761.
  • 5LU J,ADJEI O,ellEN W R,et al.An Aptiori Based Algorithm for Mining Concurrent Branch Pattern[C].Sovata,Romania:Samia Press,2005:183-189.
  • 6Wu Xindong,Zhang Chengqi,Zhang Shichao.Efficient Mining of Both Positive and Negative Association Rules[J].ACM Transactions on Informations Systems,2004(7):381 -405.
  • 7LU JING, CHEN WEI-RU, ADJEI O, et al. Sequential patterns postprocessing for structural relation patterns mining [ J]. International Journal of Data Warehousing and Mining,2008,4(3) : 71 -89.
  • 8MANNILA H, MEEK C. Global partial order from sequential data [C]// KDD-2000: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2000: 161- 168.
  • 9INOKUCHI A, WASHIO T, MOTODA H. An Apriori-based algorithm for mining frequent substructures from graph data [ C l// PDKK'00: Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery, LNCS 1910. Berlin: Springer-Verlag, 2000:13 - 23.
  • 10AGRAWAL R, SRIKANT R. Fast algorithm for mining association rules [ C]// VLDB 1994: 20th International Conference on Very Large Data Bases. Los Altos, CA: Morgan Kaufmann, 1994:487 - 499.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部