期刊文献+

盲源分离用于DOA估计研究

A study of DOA estimation by blind source separation
下载PDF
导出
摘要 方位估计是水下目标定位、跟踪的前提。提出了一种复数域奇异值分解盲源分离方法,估计出了阵列流形,并利用阵列流形表现出的相位关系完成了目标方位估计。通过仿真实验与MUSIC高分辨方位估计方法和相关文献的方法进行了对比,结果表明该方法能很好地实现目标方位的实时估计,且性能更佳。 DOA (direction of arrival) estimation is the basis of underwater target location and tracking. Based on average time-delay correlation matrices, a new kind of complex blind source separation using the singular value decomposition is proposed. The array manifold and source signals are estimated via the method thereafter. Then the DOA estimation is performed by using the phase relationship of the array manifold. Its efficiency and stability are tested by simulation, which shows that it can accomplish real-time estimation of the target direction, and can estimate the corresponding target signal. And it is superior to the MUSIC method and the method proposed in relevant literatures.
出处 《声学技术》 CSCD 北大核心 2008年第5期654-657,共4页 Technical Acoustics
关键词 DOA估计 盲源分离 MUSIC direction of arrival estimation blind source separation MUSIC
  • 相关文献

参考文献11

  • 1Schmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEE Trans. on AP, 1986, 34(3): 276-280.
  • 2冯杰,孙超,唐建生,张揽月.抑制运动强干扰的稳健波束域目标方位估计方法(英文)[J].声学技术,2006,25(6):617-622. 被引量:4
  • 3Kunihiko Y, Nozomu H. ICA-based separation and DOA estimation of analog modulated signals in multipath enviroment[J]. IEICE Trans. Commun, 2005, 88(11): 42464249.
  • 4Coviello C M, Sibul L H. Blind source separation and beamforming: Algebraic technique analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(1): 221-235.
  • 5Choi S, Cichocki A, Park H M, Lee S Y. Blind source separation and independent component analysis: A review [J]. Neural Information Processing, 2005, 6(1): 1-57.
  • 6Michael S P, Jan L. A survey of convolutive blind source separation methods[Z]. Springer Handbook on Speech Pr ocessing and Speech Communication, 2006: 1-34.
  • 7Andreas Ziehe and Klaus-Robert Muller. TDSEP-an efficient algorithm for blind separation using time structrure[A]. I- CANN'98[C]. Berlin 1998, Springer. 675-680.
  • 8SUN Z L, HUANG D S, ZHENG C H, et al. Optimal selection of time lags for TDSEP based on genetic algorithm [J]. Neurocomputing, 2006, 69(7-9): 884-887.
  • 9朱维杰,孙进才,曾向阳.利用时空平均法改善DOA估计性能[J].声学技术,2002,21(3):131-133. 被引量:3
  • 10淦华东,李志舜,李乐,苏蔿.基于自适应子空间估计的DOA跟踪算法[J].声学技术,2004,23(4):214-217. 被引量:9

二级参考文献24

  • 1[1]R.O.Schmidt.Multiple emitter location and signal parameter estimation [J].IEEE Trans.Antennas and Propagat.1986,34(3):276-280.
  • 2[2]R.Roy and T.Kailath.ESPRIT-Estimation of Signal Parameter Via Rotational Invariance Techniques [J].IEEE Trans.Acoust.,Speech,Signal Processing,1989,37(7):984-995.
  • 3[1]Andrzej Cichocki, Robert E. Bogner, Leszek Moszczynski and kenneth Pope. Modified Herault-Jutten algorithms for blind separation of source[J]. Digital Signal Processing. 1997,9(7):80-93.
  • 4[2]C. Jutten,J. Herault. Blind separation of source, Part I: An adaptive algorithm based on neuromimetic architecture[J]. Signal Processing,1991,24(1):1-10.
  • 5[3]Aapo Hyvarinen and E. Oja. A fast fixed-point algorithm for independen component analysis[J]. Neural computation. 1997,9(7):1438-1492.
  • 6[4]Aapo Hyvarinen. Fast and roubst fixed-point algorithms for independent component analysis[J]. IEEE Trans. On Neural Networks. 1999,10(3):626-631.
  • 7[5]Pierre Comon. Independent component analysis, a new concept[J]. Signal Processing. 1994,36(2):287-314.
  • 8Chonavel T,Champagne B,Riou C.Fast adaptive eigenvalue decomposition: a maximum likelihood approach[J].Signal processing,2003,83.307-324.
  • 9Schmidt R O.Multiple emitter location and signal parameter estimation,in: Proc RADC,Spectrum Estimation Workshop ,New York,1979,243-258.
  • 10Kumaresan R,Tufts K W.Estimating angles of arrival of multiple plane waves[J].IEEE Trans,1983,19:134-139.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部