期刊文献+

基于相似度的高精度基音检测算法 被引量:1

A similarity-based high resolution pitch detection algorithm
下载PDF
导出
摘要 提出了一种具有较高精度且抗噪性能强的基音检测算法。该算法将线性预测残差看作语音源信号的近似,对其进行频谱分析,依据残差幅度谱算得基音周期的粗估值。然后回到时域信号,根据基音周期粗估值设计一长度可调的窗,通过窗函数在语音段连续取两段语音信号作相似度运算,可根据最大相似度值计算出准确的基音周期。该方法准确性高,在噪声环境下也具有较好的效果。 A pitch detection algorithm of high resolution and robust anti-noise is proposed in this paper. Firstly, the linear predictive residual is used as the approximate of original speech signal and is transformed by FFT. Secondly pitch is calculated based on the magnitude spectrum of residual and a ~ndow, the length of which could be adjusted, is designed. Finally the more exact pitch is obtained by similarity calculation of two successive speech signal segments chosen by the window in each frame signal. This algorithm is of high resolution and effective in low SNR environment.
出处 《声学技术》 CSCD 北大核心 2008年第5期704-707,共4页 Technical Acoustics
基金 国家自然基金(60572076) 江苏省高校自然科学基金(05KJB510113)
关键词 基音检测 相似度 线性预测残差信号 pitch detection similarity linear predictive residual signal
  • 相关文献

参考文献8

二级参考文献31

  • 1Picard R W. Affective Computing. Cambridge: MIT Press,1997
  • 2Yoshitom Y, KIM S, Kawano T et al. Effect of sensor fusion for recognition of emotional states using voice, face image and thermal image of face. In: Proceedings, 9th IEEE International Workshop on Robot and Human Interactive communication, Osaka, 2000; 1:178-183
  • 3Dellaert F, Polzin T, Waibel A. Recognizing emotion in speech. In: 4th International Conference on Spoken Language Processing, Philadelphia; 1996:1970-1973
  • 4Yacoub S, Simske S, Lin X et al. Recognition of emotions in interactive voice response systems. Hewlett-Pachard Labratories HPL-2003-136, 2003
  • 5Lin X, Chen Y, Lira Set al. Recognition of emotional state from spoken sentenses. In: IEEE 3rd Workshop on Multimedia Signal Processing, Copenhagen, 1999:469-473
  • 6Breazeal C. Regulation and Entrainment in Human-Robot Interaction. International Journal of Robotic Research,2002; 21(10-11): 883-902
  • 7Pao T, Chen Y, Ych Jet al. An exploratory study on emotion recognition in mandarin speech. In: 1st Chinese Conference on Affectie Computing and Intelligent Interaction, Bcijing, 2003; 1:206-212
  • 8Bosch L T. Emotions; What is possible in the ASR framework. In: ISCA Workshop on Speech and Emotion,Belfast, 2000
  • 9Pereira C. Dimensions of emotionM meaning in speech. In:ISCA Workshop on Speech and Emotion, Belfast, Northern Ireland, 2000
  • 10Du Limin,Hou Ziqiang.Determination of the instants of glottal closure from speech wave using wavelet transform[A]. ICSP'96 Beijing: IEEE & PHEI[C].1996.473~476.

共引文献63

同被引文献13

  • 1成新民,曾毓敏,赵力.一种改进的AMDF求取语音基音的方法[J].微电子学与计算机,2005,22(11):162-164. 被引量:16
  • 2吴恬盈.一种新的清浊音在线辨识法[J].计算机仿真,2007,24(4):72-74. 被引量:1
  • 3张康杰,赵欢,饶居华.基于LV-AMDF的自适应基音检测算法[J].计算机应用,2007,27(7):1674-1676. 被引量:7
  • 4Jong soon J,Jeong Jin K,Myung J B. Pitch alteration technique inspeech synthesis system [J]. IEEE Transacions on Consumer Elec-tronics, 2001,47 (1): 163 - 167.
  • 5Chrjstensen O. Localization and navigation of a mobile robot usingnatural point landmarks extracted from data [J]. Robotics and Au-tonomous Systems, 2000, 33 (3) : 131 - 142.
  • 6Krubsack D A,Niedeoohn R J. An autocorrelation pitch detectorand voicing decision with confidence in ensures developed for noisecorrupted speech [J]. IEEE Trans, on Acoustics, Speech, SignalProcessing, 1991,39 (2): 319 - 329.
  • 7Kadame S,Broudreaux B G F. Application of wavelet transform forpitch detection [J]. IEEE Trans, on IT, 1992, 38: 917 - 924.
  • 8Jalil M,Butt F A,Malik A. Short-time energy, magnitude,ze-ro crossing rate and autocorrelation measurement for discriminatingvoiced and unvoiced segments of speech signals [A]. 2013 Inter-national Conference on Technological Advances in Electrical,Elec-tronics and Computer Engineering (TAEECE) [C]. IEEE, 2013 :208 -212.
  • 9顾良,刘润生.利用声调判别提高汉语数码语音识别性能[J].清华大学学报(自然科学版),1998,38(9):36-39. 被引量:7
  • 10郑继明,王劲松.语音基音周期检测方法[J].计算机工程,2010,36(10):273-275. 被引量:11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部