期刊文献+

一类含贝塞尔函数积分的数值算法 被引量:2

Numerical Analysis on a Class of Integrals Involving Bessel Function
下载PDF
导出
摘要 在Filon型法和渐进法的基础上,构造了一类含有贝塞尔函数广义积分的一个有效数值算法,同时给出了新算法所产生的误差,并用数值算例对理论分析得结果进行了检验.理论分析及数值实验均表明:当参数r增大时,该算法的精确度将提高. Based on Filon-type and Asymptotic method, this paper constructs an efficient numerical method for evaluating a class of generalized integrals involving Bessel functions and presents the asymptotic error of the new method. Theoretical analysis and experimental results show that the accuracy of this method increases with the parameter r.
出处 《重庆工学院学报(自然科学版)》 2008年第11期83-88,共6页 Journal of Chongqing Institute of Technology
基金 国家自然科学基金资助项目(10771218)
关键词 数值积分 渐进法 Filon型方法 贝塞尔函数 numerical quadrature asymptotic method Filon-type method Bessel function
  • 相关文献

参考文献10

  • 1[1]Iserles A.On the numerical quadrature of highly-oscillating integrals I:Fourier transforms[J].IMA J Num Anal,2004,24:365-391.
  • 2[2]Iserles A.On the numerical quadrature of highly-oscillating integrals Ⅱ:Irregular oscillators[J].IMA J Num Anal,2005,25:25-44.
  • 3[3]Iserles A,Nφrsett S P.On quadrature methods for highly oscillatory integrals and their implementatlon[J].BIT,2004,44:755-772.
  • 4[4]Iserles A,Nφrsett S P.Efficient quadrature of highly-oscillatory integrals using derivatives[J].Proc.Royal Soc Lond Ser A Math Phys Eng Sci,2005,461:1383-1399.
  • 5[5]Xiang Shuhuang.Efficient Filon-Type Methods for ∫baf(x)eiwg(x)dx[J].Numer Math,21307,105:633 -658.
  • 6[6]Kaufman A A,Keller G V.频率域和时间域电磁测深[M].王建谋,译.北京:地质出版社,1987:386-393.
  • 7[7]Filon L N G.On a quadrture formula for trigonometric integrals[J],Proc Royal Soc Edinburgh,1928,49:38-47.
  • 8[8]Abramowitz M,Stegun I A..Handbook of Mathematical Functions:with Formulas,Graphs,and Mathematical Tables[M].New York:Dover Publications Inc,1965:361.
  • 9[9]Stein E.Harmonic Analysis:Real-variable methods,orthogonality,and oscillatory integrals[M].Princeton NJ:Princeton University Press,1993:338.
  • 10[10]Gradshteyn I S,Ryzhik I M.Tables of integrals,series and products[M].New York:Academic Press,1980.

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部