期刊文献+

辐射场中二能级原子的量子态保真度 被引量:3

Fidelity of two-level atom's quantum states in radiation field
下载PDF
导出
摘要 利用半经典理论和量子理论研究辐射场与二能级原子(量子位)的相互作用,给出二能级原子的量子态保真度表达式。讨论了不同的原子初始态条件下,半经典理论中辐射场强度对量子态保真度的影响和量子理论中辐射场光子数对量子态保真度的影响。结果表明:在半经典理论中,当原子与辐射场发生共振相互作用时,初始处于叠加态的原子的量子态保真度与辐射场强度无关;原子的量子态保真度随时间呈周期性演化,其演化的频率受辐射强度或光子数调制。此外,选择适当的失谐量,能够有效地改变量子信息的保真度。 The interaction between radiation and two-level atom was investigated by semi-classical theory and quantum theory respectively. The fidelity of the two-level atom's quantum state was written out The influences of the radiation intensity in the case of semi-classical theory and the photon number of the radiation in the case of quantum theory on the fidelity were discussed for different atomic initial states. It is found that the fidelity of quantum state is independent of radiation intensity when the atom is initially in a superposition state and the atom interacts resonantly with the radiation field in semi-classical theory The atom's quantum fidelity evolves periodically with time, and its frequency is modulated by radiation intensity. Furthermore, it can effectively change quantum information fidelity when the appropriate detuning is selected.
出处 《量子电子学报》 CAS CSCD 北大核心 2008年第6期719-725,共7页 Chinese Journal of Quantum Electronics
基金 湖南省自然科学基金(06JJ50118)资助项目
关键词 量子光学 保真度 二能级原子 辐射场 quantum optics fidelity two-level atom radiation field
  • 相关文献

参考文献15

  • 1Yin Hongjun. Quantum Mechanics (量子力学)[M]. Hefei: University of Science and Technology of China Press, 1999.
  • 2Scully M O. Quantum Optics [M]. Cambridge: Cambridge University Press, 1997, 198.
  • 3Louisell W H. Quantum Statistical Properties of Radiation (辐射场的量子统计性质)[M]. Cheng Shui, Yu Xi ling, translate, Beijing: Science Press, 1982.
  • 4Peng Jingsheng, Li Gaoxiang. Introduction of Modern Quantum Optics (近代量子光学导论)[M]. Beijing: Science Press,1996.
  • 5张登玉.消除简并双光子过程中二能级原子的消相干性[J].物理学报,2002,51(3):532-535. 被引量:36
  • 6Jozsa R. Fidelity for mixed quantum state [J]. J. Mod. Opt., 1994, 12(41): 2315.
  • 7刘堂昆,王继锁,柳晓军,詹明生.纠缠态原子偶极间相互作用对量子态保真度的影响[J].物理学报,2000,49(4):708-712. 被引量:35
  • 8Vadeiko I P, Miroshnichenko G P. Algebraic approach to the Tavis-Cummings problem [J]. Phys. Rev. A, 2003, 67: 053808-053821.
  • 9Duan Luming, Guo Guangcan. Perturbative expansions for the fidelity and spatially correlated dissipation of quantum bits [J]. Phys. Rev. A, 1997, 56: 4466-4470.
  • 10Alsing P, Guo D S, Carmichael H J. Dynamic Stark effect for the Jaynes-Cummings system [J]. Phys. Rev. A, 1992, 45: 5135-5143.

二级参考文献72

共引文献100

同被引文献38

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部