期刊文献+

全固态带隙结构光子晶体光纤中非线性过程的数值模拟 被引量:2

Numerical simulation for nonlinear evolution in all-solid photonic bandgap fibers
下载PDF
导出
摘要 全固态带隙结构光子晶体光纤能够同时提供大模场面积和可控色散特性,为高功率下的非线性传输过程提供了一种新的介质,尤其在构成全光纤色散补偿和高功率孤子传输器件方面具有重要的应用价值。利用改进的广义非线性薛定谔方程数值模拟了全固态带隙结构光子晶体光纤中的非线性过程,分析了这种光纤中由于带隙特性和色散特性的共同作用,对飞秒激光非线性传输过程的影响,其中最明显的效应就是带隙特性对孤子白频移有很强的抑制作用。进一步详细讨论了入射脉冲峰值功率、带隙宽度以及带隙中心位置对非线性传输过程的影响。 All-solid photonic crystal fiber has the unique property which can used to shift the zero-dispersion wavelength down to visible light, while maintain a large mode area which is one order of magnitude larger than that may be achieved in index guiding fiber. It can be a very valuable nonlinear material in dispersion compensation and high power soliton propagation, especially for the all-fiber devices. Numerical calculation is carried out for the simulation of nonlinear evolution in all-solid photonic crystal fiber with a modified general nonlinear Schr5dinger equation. The bandgap has strong effects on the suppression of soliton selffrequency shift during the nonlinear process. The effects of peak power of femtosecond laser, the bandwidth and central wavelength of the bandgap on the nonlinear process are also analyzed.
出处 《量子电子学报》 CAS CSCD 北大核心 2008年第6期742-748,共7页 Chinese Journal of Quantum Electronics
基金 国家重点基础研究(2003CB314904 2006CB806002) 国家高技术研究发展计划(2007AA032447) 国家自然科学基金(60678012) 高等学校博士学科点专项科研基金(20070056083 20070056073) 教育部新世纪优秀人才支持计划(NCET-07-0597)资助的课题
关键词 非线性光学 光子晶体光纤 光子带隙 飞秒激光 nonlinear optics photonic crystal fiber photonic bandgap femtosecond laser
  • 相关文献

参考文献3

二级参考文献53

  • 1胡明列,王清月,栗岩峰,王专,张志刚,柴路,章若冰.飞秒激光在光子晶体光纤中产生超连续光谱机制的实验研究[J].物理学报,2004,53(12):4243-4247. 被引量:17
  • 2韩文,吴锦花,文双春,张华,傅喜泉.光子晶体光纤中频率啁啾对超连续谱的影响[J].光电子.激光,2004,15(12):1452-1455. 被引量:3
  • 3[1]Knight J C, Birks T A, Russell P S J et al 1996 Opt. Lett. 21 1547
  • 4[2]Birks T A, Knight J C, Russell P S J et al 1997 Opt. Lett. 22 961
  • 5[3]Knight J C, Russell P S J 2002 Science 296 276
  • 6[4]Ranka J K, Windeler R S, Stentz A J et al 2000 Opt. Lett. 25 25
  • 7[5]Birks T A, Wadsworth W J, Russell P S J 2000 Opt. Lett. 25 1415
  • 8[6]Wadsworth W J, Blanch A O, Knight J C et al 2002 J. Opt. Soc. Am. B 19 2148
  • 9[7]Husakou A V, Herrmann J 2002 J. Opt. Soc. Am. B 19 2171
  • 10[8]Apolonski A, Povazay B, Unterhuber A et al 2002 J. Opt. Soc. Am. B 19 2165

共引文献27

同被引文献21

  • 1徐永钊,王子南,张霞,黄永清,任晓敏.基于微结构光纤的10GHz超过1100信道的平坦超连续谱光源[J].中国激光,2007,34(5):675-679. 被引量:12
  • 2J.M.Stone,J.C.Knight.Visibly "white" light generation in uniform photonic crystal fiber using a microchip laser[J].Opt.Express,2008,16(4):2670-2675.
  • 3F.Luan,A.K.George,T.D.Hedley et al..Allsolid photonic bandgap fiber[J].Opt.Lett.,2004,29(20):2369-2371.
  • 4T.Taru,J.Hou,J.C.Knight.Raman gain suppression in allsolid photonic bandgap fiber[C].European Conference and Exhibition of Optical Communication,Berlin,2007,7.1.1.
  • 5C.B.Olausson,C.I.Falk,J.K.Lyngs et al..Amplification and ASE suppression in a polarizationmaintaining ytterbiumdoped allsolid photonic bandgap fibre[J].Opt.Express,2008,16(18):13657-13662.
  • 6A.Shirakawa,H.Maruyama,K.Ueda et al..Highpower Ybdoped photonic bandgap fiber amplifier at 1150-1200 nm[J].Opt.Express,2009,17(2):447-454.
  • 7G.P.Agrawal.Nonlinear Fiber Optics[M].San Diego:Academic Press,2007.453-454.
  • 8I.Cristiani,R.Tediosi,L.Tartara et al..Dispersive wave generation by solitons in microstructured optical fibers[J].Opt.Express,2004,12(1):124-135.
  • 9Xia Chenan,Kumar Malay,Cheng Mingyuan et al..Power scalable midinfrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts timeaveraged power[J].Opt.Express,2007,15(3):865-871.
  • 10T.A.Birks,F.Luan,G.J.Pearce et al..Bend loss in allsolid bandgap fibres[J].Opt.Express,2006,14(12):5688-5698.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部