期刊文献+

甲醇在Pt-Fe(111)/C表面吸附的理论研究 被引量:5

Theoretical Study on the Adsorption of Methanol over the Pt-Fe(111)/C Surface
原文传递
导出
摘要 采用密度泛函理论和周期平板模型相结合的方法,对CH3OH分子在Pt-Fe(111)/C表面top,fcc,hcp和bridge位的吸附模型进行了构型优化、能量计算,结果表明bridge位是较有利的吸附位.掺杂后费米能级的位置发生了右移,价带和导带均增宽,极利于电子-空穴的迁移,这对提高催化活性是非常有利的.考察抗中毒性发现:CO在Pt(111)/C面上的吸附能比甲醇吸附能要高,CO在Pt-Fe(111)/C的吸附能比甲醇吸附能要低,可说明CO在Pt(111)/C面上有中毒效应,而Pt-Fe(111)/C的抗CO中毒能力增强,是催化氧化甲醇良好的催化剂. The density functional theory (DFT) and self-consistent periodic slab calculations were used to investigate the methanol adsorption on Pt-Fe(111)/C surface. The adsorption energy, equilibrium geometry and vibrational frequency of CH3OH at four sites (top, fcc, hcp and bridge) on the Pt-Fe(111)/C surface were predicted and the favorite adsorption site for methanol should be the bridge site. The Fermi level of the cluster model moved to right in catalyst Pt-Fe/C compared with catalyst Pt/C. Both the sites of the valence band and conduction band of the doped system have been broadened, which is favorable for electrons to transfer to cavity. Compared with the adsorption energy of CH3OH on Pt(111)/C surface, the adsorption energy of CO is high, and the Pt(111)/C is favorable to be oxidized to lose the activity. It indicates that the catalyst Pt-Fe(111)/C which is in favor of decomposing methanol is of better anti-poisoning ability than that of Pt(111)/C.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2008年第22期2457-2461,共5页 Acta Chimica Sinica
基金 四川省教育厅重点项目基金(No.07ZA097)资助项目.
关键词 甲醇 Pt-Fe(111)/C表面 密度泛函理论 电子结构 methanol Pt-Fe(111)/C surface density functional theory electronic structure
  • 相关文献

参考文献32

  • 1Buie, C. R.; Posner, J. D.; Fabian, T.; Chaa, S.-W.; Kima, D.; Prinz, F. B.; Eaton, J. K.; Santiago, J. G. J. Power Sources 2006, 161, 191.
  • 2张胜涛,温彦.燃料电池发展及其应用[J].世界科技研究与发展,2003,25(3):57-66. 被引量:63
  • 3Acres, G. J. K. J. Power Sources 2001, 100, 60.
  • 4Graham, M.; Barbir, F.; Marken, F. In Fuel Cell Seminar, Part 3 [C], Orlando, Florida, USA, 1996, 40.
  • 5Min, M. K.; Cho, J.; Cho, K.; Kim, H. Electrochim. Acta 2000, 45, 4211.
  • 6Maillard, F.; Bonnefont, A.; Chatenet, M.; Guetaz, L.; Beatrice, D.-C.; Roussel, H.; Ulrich, S. Electrochim, Acta 2007, 53, 811.
  • 7Baglio, V.; Stassi, A.; Blasi, A. D.; D'Urso, C.; Antonucci, V.; Arico, A. S. Electrochim. Acta 2007, 53, 1360.
  • 8Xiong, L.; Kannan, A. M.; Manthikam, A. Electrochem. Commun. 2002, 4, 898.
  • 9Bergamaski, K.; Gonzalez, E. R.; Nart, F. C. Electrochim. Acta 2008, 53, 4396.
  • 10Jose Ricardo, C. S.; Ermete, A.; Gonzalez, E. R. Appl. Catal. B 2005, 57, 283.

二级参考文献21

  • 1林祖襄 郭祝昆 等.快离子导体[M].上海:上海技术出版社,1983.228.
  • 2.[N].科技日报,2000.10-07.
  • 3.[N].科技日报,2000-08-02.
  • 4.100kw级MCFC运行研究设备图(装置、电气设备)[M].电力中央研究所,平成7年6月(日文)..
  • 5Wei He. Operating characteristic of amoltencarbonate fuel cell power generation system, International Journal of Energy Research, 1999, (123) : 1331-- 1344.
  • 6Joon K.Critical issue and future prospects for molten carbonate rule cells, Journal of Power Sources, 1996, (61) : 129-133.
  • 7Dicks, Andrew, Siddle Angle, Assessmnet of commercial prospects of molten carbonate rule clls, J. of Power Sources, 2000, 86(3):316.
  • 8Wei He, Dynamic model for molten carbonate fuel cells power generation system, Energy Convers, Mgnt, 1998,39(8) : 775-783.
  • 9Hirschenhofer J H, Stauffer D B, Engleman, Kleet M G, Fuel cell handbook[M], Morganotwm: Parsons Corporation, 1998,1-36.
  • 10Yoshiba F, Abe T, watanabe numberic analysis of molten carbonate fuel cell stack performance: diagnosis of internal conditions using cell voltage profiles,J.of Power Sources, 2000, (87):21-27.

共引文献71

同被引文献26

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部