期刊文献+

双取代铵氧化物(R_2HNO)与双取代羟胺(R_2NOH)的相互转换机制的量子化学研究 被引量:3

A Quantum Chemical Study on the Interconversion Mechanism between Double-substituted Ammonium Oxide and Double-substituted Hydroxylamine
原文传递
导出
摘要 在B3LYP/6-311++G(d,p)水平下,首次对一系列双取代铵氧化物(R2HNO)与双取代羟胺(R2NOH)[R=CH3,NH2,OH,F,CH2CH3,CH(CH3)2,C(CH3)3]同分异构体的相互转换机制进行了理论计算研究,并与已知的H3NO和H2NOH进行了比较.结果表明,相对于双取代羟胺(R2NOH),按照H<CH3<NH2<OH<F的顺序,增加取代基R的电负性有助于提高双取代铵氧化物(R2HNO)的热力学和动力学稳定性.此外,对烷基取代基R[R=CH3,CH2CH3,CH(CH3)2,C(CH3)3],其空间位阻越大越能增加双取代铵氧化物(R2HNO)的热力学稳定性,动力学稳定性也有相应增加,但不显著.对所研究的7种取代基[R=CH3,NH2,OH,F,CH2CH3,CH(CH3)2,C(CH3)3],R2HNO向R2NOH转换的能垒介于27.0~56.3 kcal/mol之间,表明在气相条件下极有可能观测到双取代铵氧化物(R2HNO). At the B3LYP/6-311 + + G(d,p) level, the first time computational study was performed on the interconversion mechanism between a series of double-substituted ammonium oxide (R2HNO) and double-substituted hydroxylamine (R2NOH) isomers with R=CH3, NH2, OH, F, CH2CH3, CH(CH3)2 and C(CH3)3. Comparisons were made with the mechanism of H3NO and H2NOH. It was shown that relative to the double-substitued hydroxylamine (R2NOH), the increase of/he electronegativity of R in the order of H〈 CH3〈NH2〈OH〈F could raise both the thermodynamic and kinetic stability of the double-substituted ammonium oxide (R2HNO). In addition, for the alkyl substituents R [R=CH3, CH2CH3, CH(CH3)2 and C(CH3)3], the greater steric effect would result in the higher thermodynamic stability, and also certainly increased kinetic stability, though not so noticeable. For the newly considered seven substituents [R=CH3, NH2, OH, F, CH2CH3, CH(CH3)2 and C(CH3)3], the conversion barrier from R2HNO to R2NOH is as large as 27.0-56.3 kcal/mol. This indicates that all of them might be probably characterized in gas-phase.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2008年第22期2483-2488,共6页 Acta Chimica Sinica
基金 国家自然科学基金(Nos.20103003 20573046 20773054) 吉林省杰出青年基金(No.20050103) 新世纪优秀人才支持计划(NCET)和教育部博士点基金(No.20070183028)资助项目.
关键词 R2HNO R2NOH 同分异构体 热力学稳定性 动力学稳定性 R2HNO R2NOH isomer thermodynamic stability dynamic stability
  • 相关文献

参考文献29

  • 1Plato, V.; Hartford, W. D.; Hedberg, K. J. J. Chem. Phys. 1970, 53, 3488.
  • 2Fox, W. B.; MacKenzie, J. S.; Vanderkooi, N.; Sukornick, B.; Wamser, C. A.; Holmes, J. R.; Eibeck, R. E.; Stewart, B. B. J. Am. Chem. Soc. 1966, 88, 2604.
  • 3Wallmeier, H.; Kutzelnigg, W. J. Am. Chem. Soc. 1979, 101, 2804.
  • 4Kinread, S. A.; Shreeve, J. M.; Heard, G. L. lnorg. Chem. 1984, 23, 3109.
  • 5Kinread, S. A.; Shreeve, J. M.; Heard, G. L. Inorg. Chem. 1984, 23, 4174.
  • 6Reed, A. E.; Schleyer, P. V. R. J. Am. Chem. Soc. 1990, 112, 1434.
  • 7Gillespie, R. J.; Robinson, E. A.; Heard, G. L. Inorg. Chem. 1998, 37, 6884.
  • 8Dobado, J. A.; Martinez-Garcia, H.; Molina, J. M.; Sundberg, M. R. J. Am. Chem. Soc. 1998, 120, 8461.
  • 9Burtzoff, M. D.; Peter, L.; Lepse, P. A.; Zhang, D. Y. J. Mol. Struct. Theochem. 2002, 619, 229.
  • 10Chestnut, D. B. Chem. Phys. 2003, 291,141.

二级参考文献22

  • 1L. Y. Tao,(Department of Mechanical Engineering, University of Pittsburgh, PA15261,USA)G. Q. Chen(Centre for Environmental Sciences, Peking University, Beijing 100871,P. R. China)K. R. Rajagopal(Department of Mechanical Engineering, University of Pittsbur.A CONSTITUTIVE THEORY FOR THE REYNOLDS-STRESS CLOSURES IN TURBULENCE MODELLING[J].Journal of Hydrodynamics,1996,8(1):103-109. 被引量:1
  • 2Bardwell, M W; Bacak, A; Raventos, M T; Percival, C J; Sanchez-Reyna, G; Shallcross, D E . Phys Chem Chem Phys 2003, 5, 2381.
  • 3Roehl, C M; Mazely, T L; Friedl, R R; Li, Y; Francisso, J S; Sander, S E .J Phys Chem 2001, 105, 1592.
  • 4AIoisio, S; Francisco, J S. J Phys Chem 2000, 104, 6212.
  • 5Staikova, M; Donaldson, D .J Phys Chem Chem Phys 2001, 3, 1999.
  • 6Jitariu, L C; Hirst, D M. J Phys Chem A 1999, 103,6673.
  • 7Staikova, M; Donaldson, D J. J Phys Chem A 2002, 106,3023.
  • 8Eberhard, P; Meier, R; Krankowsky, D; Hodges, R R. Astron Astrophys 1994, 288, 315.
  • 9Wei, Z-G; Huang, X-R; Sun, Y-B; Liu, J-Y; Sun, J-Z. J Mol Struct (Theochem) 2004, 671, 133.
  • 10Chen, C-J, Bozzelli, J W .J Phys Chem A 1999, 103,9731.

共引文献16

同被引文献42

  • 1Pople J. A., Gill P. M. W., Johnson B. G.. Chem. Phys. Lett.[J], 1992, 199: 557-560
  • 2Johnson B. G., Frisch M. J.. J. Chem. Phys.[J], 1994, 100: 7429-7442
  • 3Gonzalez C., Schlegel H. B.. J. Chem. Phys.[J], 1989, 90: 2154-2161
  • 4Gonzalez C., Schlegel H. B.. J. Phys. Chem.[J], 1990, 94: 5523-5527
  • 5Frisch M. J., Trucks G. W., Schlegel H. B., et al.. Gaussian 98(Revision A.11)[CP], Pittsburgh PA: Gaussian Inc., 1998
  • 6Frisch M. J., Trucks G. W., Schlegel H. B., et al.. Gaussian 03(Revision A.1)[CP], Pittsburgh PA: Gaussian Inc., 2003
  • 7Plato V., Hartford W. D., Hedberg K. J.. J. Chem.Phys.[J], 1970, 53: 3488-3494
  • 8Fox W. B., MacKenzie J. S., Vanderkooi N., et al.. J. Am. Chem. Soc.[J], 1966, 88: 2604-2605
  • 9Wallmeier H., Kutzelnigg W.. J. Am. Chem. Soc.[J], 1979, 101: 2804-2814
  • 10Kinread S. A., Shreeve J. M., Heard G. L.. Inorg. Chem.[J], 1984, 23: 3109-3112

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部