期刊文献+

一种基于滑动差分的车辆边缘检测新方法 被引量:1

Novel method of vehicle edge detection based on moving difference
下载PDF
导出
摘要 在基于视频的交通监控系统中,车辆的快速、有效提取是车辆检测中的一个重要环节。在彩色图像中,当车辆出现在道路上时,因为车辆与道路相比颜色上有较大的差异,所以在车辆的边缘像素点上会发生颜色的突变。本文以此为依据,结合车辆的几何信息,提出了一种新的车辆提取算法。此方法通过对彩色图像进行逐行扫描的方式,利用滑动差分滤波器,确定每行的车辆边缘像素点,进而将车辆从图像中提取出来。实验证明,该方法能简单有效地提取车辆。 For a video-based traffic monitoring system, extracting vehicle in a fast and effective way is an important step for vehicle detection. When the vehicle appears on the road, the pixels of the vehicle's edge will have a sudden change in color because of the difference in color between the vehicle and the road in the color image. This paper proposes a novel vehicle extracting method based on the fact mentioned above and the information of the vehicle's structure. The changing degree of color feature is also used. This method can locate the position of the vehicle' s edge pixels by scanning each line of the image and using moving-difference filter, and extracting the vehicle furthermore. The experimental result shows that this method can extract the vehicle in a simple and effective way.
出处 《电子测量技术》 2008年第11期16-20,共5页 Electronic Measurement Technology
关键词 RGB色彩空间 滑动差分 车辆边缘 车辆提取 RGB color space moving difference vehicle edge vehicle extracting
  • 相关文献

参考文献8

  • 1王圣男,郁梅,蒋刚毅.智能交通系统中基于视频图像处理的车辆检测与跟踪方法综述[J].计算机应用研究,2005,22(9):9-14. 被引量:80
  • 2张晖,董育宁.基于视频的车辆检测算法综述[J].南京邮电大学学报(自然科学版),2007,27(3):88-94. 被引量:25
  • 3CHEN C J. The Moving Object Segmentation Approach to Vehicle extraction [ C ]. 2004 IEEE International Conference on Networking, Sensing and Contro 1,2004(1) : 19-23.
  • 4SONG K T. TAI J C. Image-based traffic monitoring with shadow suppression [J]. Proceedings of the IEEE, 2007(2): 413-426.
  • 5CARMONA E J. A new video segmentation method of moving objects based on blobqevel knowledge[J]. Pattern Recognition Letters, 2008 (3) : 272-285.
  • 6PRATI A. Analysis and detection of shadows in video streams: A comparative evaluation [ C ], Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on Volume 2,2001 : Ⅱ-571- Ⅱ -576.
  • 7HORPRASERT T, HARWOOD D. A statistical approach for real-time robust background subtraction and shadow detection[C] Proc. IEEE Int. Conf. Computer Vision ' 99 FRAME-RATE Workshop, 1999.
  • 8PRATI A, MIKIC I. Detecting moving shadows algorithms and evaluation [J].. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003 (7) : 918-923.

二级参考文献74

  • 1潘薇,游志胜,吴鵾,王宁.基于模糊聚类和卡尔曼滤波的运动目标检测[J].计算机应用,2005,25(1):123-124. 被引量:10
  • 2Yanowitz S, Bruckstein A. A New Method for Image Segmentation[J].Computer Vision Graphics and Image Processing,1989,46(4):82-95.
  • 3Y Park. Shape-resolving Local Thresholding for Object Detection[J]. Pattern Recognition Letters, 2001, 22(5):883-890.
  • 4J M Blosseville, C Krafft, F Lenoir,et al.TITAN:New Traffic Measurements by Image Processing[C].Proc. of IFAC Transportation Systems, 1999,14(1):277-296.
  • 5N Hoose, L G Willumsen. Automatically Extracting Traffic Data from Video-tape Using the CLIP4 Parallel Image Processor[J].Pattern Recognition Letters, 1987,6(3):199-213.
  • 6T Abramczuk. A Microcomputer based TV Detector for Road Traffic[J].In Symposium on Road Research Program,T,1984,3(2):145-147.
  • 7W Kasprzak. An Iconic Classification Scheme for Video-based Traffic Sensor Tasks[C]. W Skarbek. CAIP 2001, Springer, Berlin, 2001.725-732.
  • 8M Fathy, M Y Siyal. An Image Detection Technique Based on Morphological Edge Detection and Background Differencing for Real-time Traffic Analysis[J]. Pattern Recognition Letters, 1995, 16(2):1321-1330.
  • 9B Ross. A Practical Stereo Viasion System[C].Proceedings of International Conference on Computer Vision and Pattern Recognition,1993,3(5):148-153.
  • 10Joon Woong Lee. A Machine Vision System for Lane-Departure Detection[J].Computer Vision and Image Understanding,2002,86(1):52-78.

共引文献102

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部