期刊文献+

驼峰测速雷达信号的小波滤波分析 被引量:2

Analysis on the Wavelet Filter of the Radar Signal for Speed Measurement in Hump
下载PDF
导出
摘要 针对卡尔曼滤波方法存在的缺点,研究采用小波滤波方法进行驼峰测速雷达信号滤波。小波滤波的基本原理是对信号小波变换后的小波系数进行非线性处理,然后重构信号,滤除信号中的噪声。根据雷达信号的特点,初步选用Haar小波和二阶Dauhechies(db2)小波、3层分解、通用阈值和半软阈值算法,进行离线试验及分析。根据离线试验的滤波效果,确定选用二阶Daubechies(db2)小波、3层分解和半软阈值算法进行雷达信号滤波。利用离线试验选定的小波和算法,对采集的雷达信号进行实时滤波仿真,仿真结果与离线试验结果基本一致。将小波滤波方法与卡尔曼滤波方法对比可知,小波滤波能有效地滤除噪声、提高信噪比、减少均方差,滤波效果比较理想。因此,采用小波滤波方法进行驼峰测速雷达信号滤波,可以获得更准确的车速。 Since there are disadvantages existed in Kalman filter method, wavelet filter method is developed to filter the radar signal for speed measurement in hump. The basic principle of wavelet filter is to nonlinearly process the wavelet coefficient of the signals after wavelet transform, and reconstruct the signals afterwards to filter the noise in the signals. According to the characteristics of the radar signal, Haar wavelet, second-order Dauhechies (db2) wavelet, three-layer decomposition, universal threshold and semisoft threshold algorithm are preliminarily selected to carry through off-line tests and analyses. Based on the filter effect of the tests, second-order Dauhechies (db2) wavelet, three-layer decomposition and semisoft threshold algorithm are finally chosen for filtering radar signals. The collected radar signals are realtime filtered and simulated by means of the wavelet and algorithm selected from off-line tests. Simulation results basically agree with off-line test results. Through the comparison between wavelet filter method and Kalman filter method, it shows that the wavelet filter method can effectively filter the noise, improve the signal to noise ratio and reduce the mean square deviation. The filter effect is relatively ideal. Accordingly, to filter the radar signals for speed measurement in hump by wavelet method can obtain the train speed with more accuracy.
出处 《中国铁道科学》 EI CAS CSCD 北大核心 2008年第6期82-87,共6页 China Railway Science
关键词 小波滤波 驼峰测速 雷达信号 信号噪声 Wavelet Filter Speed measurement in hump Radar signal Signal noise
  • 相关文献

参考文献6

  • 1Kalman R E. A New Approach to Linear Filtering and Prediction Problems[J]. Transactions of the ASME-Journal of Basic Engineering, 1960, 82 (Series D): 35-45.
  • 2刘志成,陈祥光,李宇峰,李兵.传感器输出时间序列的实时小波滤波方法[J].北京化工大学学报(自然科学版),2007,34(1):71-75. 被引量:12
  • 3Donoho D L. Adapting to Unknown Smoothness Via Wavelet Shrinkage [J]. Journal of American Statistical Association, 1995, 90 (432):1200-1224.
  • 4Stephane Mallat.信号处理的小波导引[M].2版.杨力华,译.北京:机械工业出版社,2002:189-198.
  • 5Mix DF,Olejniczak KJ.小波基础及应用教程[M].杨志华,杨力华,译.北京:机械工业出版社,2006:154-181.
  • 6Ingrid D.小波十讲[M].李建平,杨万年,译.北京:国防工业出版社,2004.

二级参考文献10

  • 1蒋东方,陈明.一种实时小波降噪算法[J].仪器仪表学报,2004,25(6):781-783. 被引量:33
  • 2邓懿波,谭志洪,黄媛.小波降噪影响因素的研究[J].华东交通大学学报,2005,22(2):161-164. 被引量:12
  • 3彭玉华.小波变换与工程应用[M].北京:科学出版社,2005.
  • 4朱豫才.过程控制的多变量系统辨识[M].北京:国防科技大学出版社,2005.
  • 5DONOHO D L.De-noising by soft-thresholding[J].IEEE Trans Inform Theory,1995,41(3):613-627.
  • 6DONOHO D L,JOHNSTONE I M.Adapting to unknown smoothness via wavelet shrinkage[J].Journal of the American Statistical Association,1995,90(432):1200-1224.
  • 7ABRAMOVICH F,BENJAMINI Y.Thresholding of wavelet coefficients as multiple hypotheses testing procedure[J].Lecture Notes in Statistics,1995,103:5-14.
  • 8VIDAKOVIC B.Nonlinear wavelet shrinkage with Bayes rule and Bayes factor[J].Journal of the American Statistical Association,1998,93(441):173-179.
  • 9DONOHO D L,JOHNSTONE I M.Ideal spatial adaptation by wavelet shrinkage[J].Biometrika,1994,81(3):425-455.
  • 10陈景霞,潘立登.基于阈值决策的小波降噪方法研究及其改进[J].北京化工大学学报(自然科学版),2003,30(6):84-86. 被引量:13

共引文献29

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部