期刊文献+

最小二乘支持向量机的扩展及其在时间序列预测中的应用 被引量:1

Generalization and application in time series forecasting of the least square support vector machine method
下载PDF
导出
摘要 根据时间序列近期数据较远期数据包含有更多未来信息的思想,对最小二乘支持向量机预测方法进行了扩展,得到了更具一般性的最小二乘支持向量机预测模型,给出了扩展后的预测模型具体算法。两个时间序列的预测实例表明,扩展后的预测方法获得了更好的预测效果,提升了最小二乘支持向量机预测方法的价值。 According to the theory that the present data contains more future information than historical data in time - series, the paper extends the prediction method of least square support vector machine and obtains a more general prediction model of least square support vector machine, and develops algorithm of the extended prediction model. Prediction examples of two time - series show that the extended model is more effective. Therefore it improves the value of the prediction method of least square support vector machine.
作者 向小东
出处 《中国工程科学》 2008年第11期89-92,共4页 Strategic Study of CAE
基金 福建省教育厅科研基金资助(JA06022S)
关键词 最小二乘支持向量机 扩展 时间序列 预测 least square support vector machine generalization time series forecasting
  • 相关文献

参考文献5

二级参考文献28

  • 1HanJ W KamberM 范明 孟小峰译.数据挖掘-概念与技[M].北京:机械工业出版社,2001..
  • 2Takehira Yamaguchi. A technical analysis expert system in the stock market[J].Future Generation Computer Systems, 1989,(5):21-27.
  • 3NelloCristianini JohnShawe-Taylor 李国正 王猛 曾华军译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 4VapnikV.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 5Vapnik V N. Statistical Learning Theory[M]. New Yorkt Wiley, 1998.
  • 6Ma Junshui, Theiler J, Perkins S. Accurate On-line Support Vector Regression[J]. Neural Computation, 2003, (15): 2683-2703.
  • 7C.Saunders,M.O.Stitson,J.Weston,L.Bottou,B.Sch(o)lkopf,and A.Smola.Support vector machine-reference manual.Technical Report CSD-TR-98-03,Department of Computer Science,Royal Holloway,University of London,Egham,UK,1998.
  • 8J.Smola and B.Sch(o)lkopf.A tutorial on support vector regression.[R].NeuroCOLT Technical Report NC-TR-98-030,Royal Holloway College,University of London,UK,1998.
  • 9K.-R.Müller,A.Smola,G.R?tsch,B.Sch?lkopf,J.Kohlmorgen,and V.Vapnik.Predicting time series with support vector machines[A].In B.Sch?lkopf,C.J.C.Burges,and A.J.Smola,editors,Advances in Kernel Methods-Support Vector Learning[C].Cambridge,MA:MIT Press,1999:243-254.
  • 10S.Mukherjee,E.Osuna,and F.Girosi.Nonlinear prediction of chaotic time series using a support vector machine[A].In J.Principe,L.Gile,N.Morgan,and E.Wilson,editors,Neural Networks for Signal Processing VII-Proceedings of the 1997 IEEE Workshop[C],New York:IEEE,1997:511-512.

共引文献55

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部