摘要
根据时间序列近期数据较远期数据包含有更多未来信息的思想,对最小二乘支持向量机预测方法进行了扩展,得到了更具一般性的最小二乘支持向量机预测模型,给出了扩展后的预测模型具体算法。两个时间序列的预测实例表明,扩展后的预测方法获得了更好的预测效果,提升了最小二乘支持向量机预测方法的价值。
According to the theory that the present data contains more future information than historical data in time - series, the paper extends the prediction method of least square support vector machine and obtains a more general prediction model of least square support vector machine, and develops algorithm of the extended prediction model. Prediction examples of two time - series show that the extended model is more effective. Therefore it improves the value of the prediction method of least square support vector machine.
出处
《中国工程科学》
2008年第11期89-92,共4页
Strategic Study of CAE
基金
福建省教育厅科研基金资助(JA06022S)
关键词
最小二乘支持向量机
扩展
时间序列
预测
least square support vector machine
generalization
time series
forecasting