摘要
In this paper numerical simulations of active vibration control for conical shell structure with dis-tributed piezoelectric actuators is presented.The dynamic equations of conical shell structure are derivedusing the finite element model (FEM) based on Mindlin's plate theory.The results of modal calculationswith FEM model are accurate enough for engineering applications in comparison with experiment results.The Electromechanical influence of distributed piezoelectric actuators is treated as a boundary conditionfor estimating the control force.The independent modal space control (IMSC) method is adopted and theoptimal linear quadratic state feedback control is implemented so that the best control performance withthe least control cost can be achieved.Optimal control effects are compared with controlled responses withother non-optimal control parameters.Numerical simulation results are given to demonstrate the effective-ness of the control scheme.
In this paper numerical simulations of active vibration control for conical shell structure with distributed piezoelectric actuators is presented. The dynamic equations of conical shell structure are derived using the finite element model (FEM) based on Mindlin' s plate theory. The results of modal calculations with FEM model are accurate enough for engineering applications in comparison with experiment results. The Electromechanical influence of distributed piezoelectric actuators is treated as a boundary condition for estimating the control force. The independent modal space control (IMSC) method is adopted and the optimal linear quadratic state feedback control is implemented so that the best control performance with the least control cost can be achieved. Optimal control effects are compared with controlled responses with other non-optimal control parameters. Numerical simulation results are given to demonstrate the effectiveness of the control scheme.
基金
the National Defense Advanced Research Project(No.41320020302)