期刊文献+

Modeling and optimal vibration control of conical shell with piezoelectric actuators 被引量:1

Modeling and optimal vibration control of conical shell with piezoelectric actuators
下载PDF
导出
摘要 In this paper numerical simulations of active vibration control for conical shell structure with dis-tributed piezoelectric actuators is presented.The dynamic equations of conical shell structure are derivedusing the finite element model (FEM) based on Mindlin's plate theory.The results of modal calculationswith FEM model are accurate enough for engineering applications in comparison with experiment results.The Electromechanical influence of distributed piezoelectric actuators is treated as a boundary conditionfor estimating the control force.The independent modal space control (IMSC) method is adopted and theoptimal linear quadratic state feedback control is implemented so that the best control performance withthe least control cost can be achieved.Optimal control effects are compared with controlled responses withother non-optimal control parameters.Numerical simulation results are given to demonstrate the effective-ness of the control scheme. In this paper numerical simulations of active vibration control for conical shell structure with distributed piezoelectric actuators is presented. The dynamic equations of conical shell structure are derived using the finite element model (FEM) based on Mindlin' s plate theory. The results of modal calculations with FEM model are accurate enough for engineering applications in comparison with experiment results. The Electromechanical influence of distributed piezoelectric actuators is treated as a boundary condition for estimating the control force. The independent modal space control (IMSC) method is adopted and the optimal linear quadratic state feedback control is implemented so that the best control performance with the least control cost can be achieved. Optimal control effects are compared with controlled responses with other non-optimal control parameters. Numerical simulation results are given to demonstrate the effectiveness of the control scheme.
作者 王威远
机构地区 School of Astronautics
出处 《High Technology Letters》 EI CAS 2008年第4期418-422,共5页 高技术通讯(英文版)
基金 the National Defense Advanced Research Project(No.41320020302)
关键词 conical shell piezoelectric material smart structure vibration control active control 锥壳 压电材料 智能终端设备 振动控制 积极控制
  • 相关文献

参考文献2

二级参考文献22

  • 1唐振华.航天电子设备抗振隔振技术的设计应用[J].电子机械工程,1994(2):21-29. 被引量:3
  • 2张军,谌勇,华宏星,张志谊.卫星减振的试验研究[J].应用力学学报,2006,23(1):76-79. 被引量:10
  • 3Wang Y L,Liu R H,Wang X W.Free vibration analysis of truncated conical shells by the differential quadrature method[J].Journal of Sound and Vibration,1999,224(2):387-394.
  • 4Aksu T.A finite element formulation for free vibration analysis of shells of general shape[J].Computers and Structures,1997,65(5):687-694.
  • 5Tzou H S,Wang D W,Chai W K.Dynamics and distributed control of conical shells laminated with full and diagonal actuators[J].Journal of Sound and Vibration,2002,256(1):65-79.
  • 6Tzou H S,Wang D W.Microsensing characteristics and modal voltage of linear/nonlinear toroidal shells[J].Journal of Sound and Vibration,2002,254(2):203-218.
  • 7Sweedan A M I,El Damatty A A.Experimental and analytical evaluation of the dynamic characteristics of conical shells[J].Thin Walled Structures,2002,40:465-486.
  • 8Wang Y L,Liu R H,Wang X W.Free vibration Analysis of truncated conical shells by the differential quadrature method[J].Journal of Sound and Vibration,1999,224(2):387-394.
  • 9Aksu T.A finite element formulation for free vibration analysis of shells of general shape[J].Computers and Structures,1997,65(5):687-694.
  • 10Lim C W,Liew K M.Vibratory behavior of shallow conical shells by a global Ritz formulation[J].Engineering Structures,1995,17:63-70.

共引文献8

同被引文献11

  • 1STAVROULAKIS G E,FOUTSITZI G,HADJIGEORGIOU E. Design and robust optimal control of smart beams with application on vibrations suppression[J]. Advances in Engineering Software, 2005, 36 (11/12): 806-813.
  • 2KUMAR K R,NARAYANAN S. Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs [J]. Smart Materials and Structures,2008,17 (5):1-15.
  • 3KAPURIA S,YASIN M Y. Active vibration control of piezoelectric laminated beams with electroded actuators and sensors using an efficient finite element involving an electric node[J]. Smart Materials and Structures,2010,19.
  • 4TIERSTEN H F. Linear piezoelectric plate vibrations [M]. New York :Plenum Press, 1969.
  • 5SIMOES M. Active control of adaptive laminated structures with bonded piezoelectric sensors and actuators [J]. Computers and Structures ,2004,82(17-19) : 1349-1358.
  • 6SONG G,GU H. Active vibration suppression of a smart flexible beam using a sliding mode based controller[J]. Journal of Vibration and Control, 2007,13 (8) : 1095-1107.
  • 7SONG G,QIAO P Z,BINIENDA W K,et al. Active vibration damping of composite beam using smart sensors and actuators[J]. Journal of Aerospace Engineering,2002,15 (3) :97-103.
  • 8QIU Z C,ZHANG X M,WU H X, et al. Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate[J]. Journal of Sound and Vibration, 2007,301 (3/5) : 521-543.
  • 9SIMOES R C,VALDER S,JOHAN D H, et al. Modal active vibration control of a rotor using piezoelectric stack actuators [J]. Journal of Vibration and Control,2007,13 ( 1 ) : 45-64.
  • 10HARARI S,RICHARD C,GAUDILLER L. New semiactive multi-modal vibration control using piezoceramic components [J]. Journal of Intelligent Material Systems and Structures, 2009,20 ( 13 ) : 1603-1613.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部