期刊文献+

非线性二阶三点边值问题的存在性原理

An Existence Theory of Nonlinear Second-order Three-Point Boundary Value
下载PDF
导出
摘要 应用Leray-Schauder抉择和锥不动点定理,建立了非线性二阶三点边值问题{y"+f(t,y)=0,0<t<1 y(0)=a,y(1)-ξy(c)=b,0<ξ<1,0<c<1的正解存在性定理,其中非线性项f不允许在y=0处具有奇性。 In this paper, existence theory for positive solution is presented to nonlinear three-point boundry value problem {y"+f(t,y)=0,0〈t〈1 y(0)=a,y(1)-ζy(c)=b,0〈ζ〈1, 0〈c〈1 The function shall not be singular at. The existence of solutions is obtained via the Leray-Shauder altemative and the fixed point theorem in cones.
作者 张宇 蒋达清
出处 《长春理工大学学报(自然科学版)》 2008年第4期156-157,共2页 Journal of Changchun University of Science and Technology(Natural Science Edition)
关键词 边值问题 Leray-Schauder抉择 锥不动点定理 正解的存在性 boundary value problems leray-schauderaltemative fixed point index in cones the existence ofpositive solutions
  • 相关文献

参考文献3

  • 1Agarwal R P, O'Regan D. Existence theory for single and multiple solutions to singular positone boundary value problems [ J ]. Jour Differential Equations, 2001, 175: 393- 414.
  • 2O'Regan D. Existence theory for nonlinear ordinary differential equations [ J ].Kluwer Acad Publ Dordrecht, 1997.
  • 3Zu L, Lin X, Jiang D. Existence theory for single and multiple solutions to singular boundary value problems for second order impulsive differential equations [J]. Topol Methods in Nonlinear Anal, 2007,28: 295- 315.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部