期刊文献+

探井二开以下地层井壁稳定性钻前预测方法 被引量:6

Borehole stability prediction before drilling for formations under the second section in an exploration well
下载PDF
导出
摘要 综合分析钻井过程中通常遇到的井漏、缩径和坍塌等复杂情况,确定已钻层段的坍塌压力和破裂压力,结合神经网络理论建立地震层速度与坍塌压力、破裂压力之间的非线性映射关系,提出利用地震资料钻前预测勘探构造第1口井二开以下地层井壁稳定性的方法。中国西北地区某油田钻探某构造的YS-D井二开层段钻进过程中出现泥岩垮塌,三开层段开钻前利用该方法对三开层段坍塌压力当量钻井液密度和破裂压力当量钻井液密度进行了预测,基于预测资料调整了钻井液密度,钻进基本正常。该方法自2001年4月以来已在52口探井中成功应用。应用效果表明利用该法预测的三开层段钻头下部300 m内地层的压力变化结果与实际钻井中得到的数据较为接近,达到了钻前预测井壁稳定性的要求。 Based on the comprehensive analysis of some complicated situations met in drilling, such as circulation loss, borehole shrinkage and collapse, the collapse pressure and fracture pressure of the drilled well interval were determined. And the nonlinear relationships between the seismic interval velocity, the collapse pressure and the fracture pressure were established by neural network theory. A new borehole stability prediction method was put forward, that is, predicting the collapse pressure and fracture pressure of the formation under the second section of the first exploration well in prospecting area using seismic data. Mudstone collapse happened when drilling the second section of well YS-D in a field, northwest China. Before drilling the third section, the equivalent drilling fluid density of the collapse pressure and that of the fracture pressure of the third section were predicted by this method, and the density of drilling fluid was adjusted and the drilling made good progress. The method has been successfully applied to 52 exploration wells since April, 2001. The predicted pressure change is close to the actual result within 300 m under the bit in the third section, meeting the demands of predicting borehole stability before drilling.
出处 《石油勘探与开发》 SCIE EI CAS CSCD 北大核心 2008年第6期742-745,共4页 Petroleum Exploration and Development
基金 国家自然科学基金项目(9051005)
关键词 井壁稳定性 坍塌压力 破裂压力 层速度 钻前预测 borehole stability collapse pressure fracture pressure interval velocity prediction before drilling
  • 相关文献

参考文献25

  • 1Azeemuddin M, Maya D, Baker Atlas, et al. Under balanced drilling borehole stability evaluation and implementation in depleted reservoirs, San Joaquin Field, eastern Venezuela[A]. SPE 99165, 2006.
  • 2Karstad E, Aadnoy B S. Optimization of borehole stability using 3D stress optimization[A]. SPE 97149, 2005.
  • 3Torres M E, Frydman D, Casalis A, et al. 3D analysis for wellbore stability: Reducing drilling risks in Oriente Basin, Ecuador[A]. SPE94758, 2005.
  • 4Hemphill T. Integrated management of the safe operating window: Wellbore stability is more than just fluid density[A]. SPE 94732, 2005.
  • 5Tan C P, Freij Ayoub R, Chennell M B, et al. Managing wellbore instability risk in gas hydrate-bearing sediments[A]. SPE 92960, 2005.
  • 6Greenwood J A, Brehm A, van Oort E,et al. Application of real-time wellbore stability monitoring on a deepwater ERD well[A]. SPE 92588, 2005.
  • 7Nes O M, Fjar E,Tronvoll J,et al. Drilling time reduction through an integrated rock mechanics analysis[A]. SPE 92531, 2005.
  • 8Edwards S, Matsutsuyu B, Willson S. Imaging unstable wellbores while drilling[A]. SPE 79846, 2004.
  • 9Nikolay Y S, John C T, Samuel D B, et al. Advanced modeling, real-time model updating improve extended reach drilling success [J]. Oil and Gas Journal, 2003, 101(4):39-45.
  • 10Wisniewski W, Hamer J, Vickrey J. Rotary steerable system helps deliver best performance in Grand Isle[J].Offshore, 2002, 62(11): 80-81.

二级参考文献106

共引文献266

同被引文献71

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部