期刊文献+

黏着素与基因表达调控 被引量:1

Cohesin in Gene Regulation
下载PDF
导出
摘要 黏着素(cohesin)是一种多亚基蛋白复合体,在进化上相当保守.在真核生物细胞中,黏着素主要功能是将复制产生的姐妹染色单体连接在一起,直到细胞分裂的后期,黏着素亚基Scc1水解最终导致染色单体的分离.最近的研究表明,黏着素在基因表达、染色质结构变化和发育调节等方面也起着非常重要的作用,并且发现黏着素对基因的调节作用与其对染色体的黏着功能无关.在酵母中,黏着素最初定位于其装载蛋白Scc2的DNA结合位点上,但是在细胞周期的G2期,黏着素聚集于转录汇集区之间进而调控转录终止.在果蝇染色体上,黏着素与装载蛋白Scc2的同源物Nipped-B共定位,其作用是阻抑增强子和启动子的远距离接触.而在哺乳动物中,黏着素与CTCF隔离子蛋白共定位,并以依赖于CTCF的方式调控转录.本文概述了黏着素在不同真核生物染色体上的定位与分布,并对其在基因表达调控中的功能机制及其研究现状进行了重点阐述. Cohesin is an evolutionally conserved multisubunit complex. In eukaryotic cells, its main function, which depends on the proteolytic cleavage of cohesin subunit Sccl, is to hold replicated sister chromatids together until their segregation at anaphase. Recent studies in yeast and different animal species have shown cohesin also involved in gene regulation, chromatin structure and development. The functions of cohesin in gene expression regulation seemed to be independent to its role in cell cohesion. Cohesin is initially loaded onto the chromosomes in yeast at the sites occupied by the Scc2/4 loader protein, then accumulates between convergent genes in G2 phase of the cell cycle and mediates transcription termination. In Drosophila, cohesin mostly stays close to its loader Nipped-B, and inhibits long-range enhancer-promoter interactions. Finally, in mammals, cohesin co-localizes with the CTCF insulator protein and controls gene expression in a CTCF- dependent manner. This review will focus on the various targeting mechanisms and the gene regulatory functions of cohesin in different eukaryotes.
作者 刘石娟
出处 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2008年第11期1014-1019,共6页 Chinese Journal of Biochemistry and Molecular Biology
基金 国家自然科学基金(No.30770145)资助~~
关键词 黏着素 转录终止 远距离转录调控 转录隔离 cohesin transcription termination long-range regulation transcriptional insulation
  • 相关文献

参考文献44

  • 1Michaelis C, Ciosk R, Nasmyth K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids [ J]. Cell, 1997, 91(1) :35-45
  • 2Guacci V, Koshland D, Strunnikov A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae [J]. Cell, 1997, 91(1) :47-57
  • 3Losada A, Hirano M, Hirano T. Identification of Xcnopus SMC protein complexes required for sister chromatid cohesion [ J ]. Genes Dev, 1998, 12(13) : 1986-1997
  • 4Harvey S H, Krien M J, O'Connell M J. Structural maintenance of chromosomes (SMC) proteins, a family of conserved ATPases [J]. Genome Biol, 2002, 3(2) : reviews3003.1-3003.5
  • 5Domett D. Roles of the sister chromatid cohesion apparatus in gene expression, development, and human syndromes [J]. Chromosoma, 2007, 116(1) :1-13
  • 6Anderson D E, Losada A, Erickson H P, et al. Condensin and cohesin display different arm conformations with characteristic hinge angles [J]. J Cell Biol, 2002, 156(3) :419-424
  • 7Ciosk R, Shirayama M, Shevchenko A, et al. Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins [J]. Mol Cell, 2000, 5(2) :243-254
  • 8Uhlmann F, Wernic D, Poupart M A, et al. Cleavage of cohesin by the CD elan protease separin triggers anaphase in yeast [J]. Cell, 2000, 103(3) :375-386
  • 9Lengronne A, Katou Y, Mori S, et al. Cohesin relocation from sites of chromosomal loading to places of convergent transcription [ J ]. Nature, 2004, 430(6999) :573-578
  • 10Glynn E F, Megee P C, Yu H G, et al. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae [J]. PLoS Biol, 2004, 2(9):E259

二级参考文献47

  • 1Parrish J R, Gnlyas K D, Finley R L. Yeast two-hybrid contributions to interactome mapping [ J ]. Curr Opin Biotechnol, 2006, 17 ( 4 ) : 387-393.
  • 2Pandey A, Mann M. Proteomics to study genes and genomes [ J ]. Nature, 2000, 405(6788): 837-846.
  • 3Hall D A, Ptacek J, Snyder M. Protein mieroarray technology [ J ] . Mech Ageing Dev, 2007, 128(1) : 161-167.
  • 4Giot L, Bader J S, Brouwer C, et al. A protein interaction map of Drosophila melanogaster [ J ] Science, 2003, 302 ( 5651 ) : 1727-1736.
  • 5Bual J F, Venkatesan K, Hao T, et al. Towards a proteome-scale map of the human protein-protein interaction network [J]. Nature, 2005, 437(7062) : 1173-1178.
  • 6Shoemaker B A, Panchenko A R. Deciphering protein-protein interactions. Part I. Experimental techniques and databases [ J ].PLoS Comput Biol, 2007, 3(3): e42.
  • 7Ho Y, Gruhler A, Heilbut A, et al. Systematic identification of protein complexes in Saecharomyces cerevisiae by mass spectrometry [J]. Nature, 2002, 415(6868): 180-183.
  • 8Zhu H, Bilgin M, Bangham R, et al. Global analysis of protein activities using proteome chips [ J]. Science, 2001, 293(5537) : 2101-2105.
  • 9Uetz P, Finley R L. From protein networks to biological systems [J] . FEBS Lett, 2005, 579(8) : 1821-1827.
  • 10Stanyon C A, Liu G, Mangiola B A, et al. A Drosophila proteininteraction map centered on cell-cycle regulators [ J ]. Genome Biol, 2004, 5(12): R96.

共引文献12

同被引文献53

  • 1Trinklein N D, Aldred S F, Hartman S J, et al. An abundance of bidirectional promoters in the human genome [ J ]. Genome Res, 2004, 14(1):62-66.
  • 2Krom N, Ramakrishna W. Comparative analysis of divergent and convergent gene pairs and their expression patterns in rice, Arabidopsis, and Populus [J].Plant Phys.2008, 147(4):1763-1773.
  • 3Yang L, Yu J. A comparative analysis of divergently-paired genes (DPGs) among Drosophila and vertebrate genomes [J].BMC Evol Biol.2009, 9(1):55.
  • 4Dhadi S R, Krom N. Ramakrishna WGenome-wide comparative analysis of putative bidirectional promoters from rice, Arabidopsis and Populus [J].. Gene.2009, 429(1-2):65-73.
  • 5Li Y Y, Yu H, Guo Z M, et al. Systematic analysis of head-to-head gene organization: Evolutionary conservation and potential biological relevance [ J]. PLoS Comput Biol, 2006, 2 (7) :e74.
  • 6Beck C F, Warren R A. Divergent promoters, a common form of gene organization [J].Microbiol Rev, 1988, 52 (3) :318-326.
  • 7Sandelin A, Caminci P, Lenhard B, et al. Mammalian RNA polymerase II core promoters: insights from genome-wide studies [J]. Nat Rev Genet, 2007, 8(6) :424-436.
  • 8Yang M Q, Taylor J, Elnitski L. Comparative analyses of bidirectional promoters in vertebrates [ J]. BMC Bioinformatics, 2008, 9 ( Suppl 6) : S9.
  • 9Wang Q, Wan L, Li D Y, et al. Searching for bidirectional promoters in Arabidopsis thaliana [ J ]. BMC Bioinformatics, 2009, 10 ( Suppl 1 ) : S29.
  • 10Bondino H G, Valle E M. A small intergenic region drives exclusive t1-specific expression of the adjacent genes in Arabidopsis thaliana [J].BMC Mol Biol.2009, 10(1):95.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部