期刊文献+

一类捕食-食饵模型的全局分歧研究 被引量:2

Research on global bifurcation of a predator-prey model
下载PDF
导出
摘要 研究了一类具有避难所的两物种间的捕食-食饵模型在第二边界条件下的平衡态正解的存在性,其功能反应函数为HollingⅡ型.给出了此解的先验估计,利用特征值理论得到此解的稳定性结论;利用局部分歧理论得出在(d(2j),(u*,v*))处可以产生分歧;在一维情况下,利用全局分歧理论得到由(d(2j),(u*,v*))处产生的局部分歧可以延拓成整体分歧,且连通分支jτ伸向无穷. The existence of positive solutions of the steady-state system is discussed for the predator-prey model between two species with functional response Holling type Ⅱ under the second boundary conditions. A priori-estimate of the solution is given and its stability is also discussed by means of eigenvalue theory. By means of local bifurcation theory, it is proved that the model bifurcations at the point (d2^(j), (u* ,v* )). In the one dimensional case, by means of global bifurcation theory, it is proved that the local bifurcation at (d2^(j), (u*, v* )) can be extended to global bifurcation, and the continuum τj joins up with infinity.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期10-13,共4页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10571115) 陕西省自然科学基础研究计划项目(2007A11)
关键词 捕食-食饵模型 HollingⅡ型 全局分歧 predator-prey model Holling type Ⅱ global bifurcation
  • 相关文献

参考文献9

  • 1Ko W, Ryu K. Qualitative analysis of a predator-prey model with Holling type Ⅱfunctional response incorporating a prey refuge[J]. Journal of Differential Equations, 2006, 231 : 534-550.
  • 2Jang J. Global bifurcation and structure of turing patterns in the 1-D Lengyel-Epstein model[J].Journal of Dynamics and Differential Equations, 2004, 16: 297- 320.
  • 3Ni W M, Tang M X. Turing patterns in the LengyelEpstein system for the CIMA reaction[J]. Transactions of the American Mathematical Society, 2005, 357(10): 3 953-3 969.
  • 4Wu J H. Coexistence states for cooperative model with diffusion [J]. Computers and Mathematics with Application, 2002, 43: 1277-1290.
  • 5Wu J H. Global bifurcation of coexistence state for the competition model in the chemostat [J]. Nonlinear Analysis, 2000, 39(7): 817-835.
  • 6钟承奎,范先令,陈文yuan.非线性泛函分析引论[M].兰州:兰州大学出版社,2004.
  • 7Smoller J. Shock waves and reaction diffusion equations [M]. New York..Springer-Verlag, 1999 : 167-180.
  • 8Chen W Y, Wang M X. Qualitative analysis of predatorprey models with B-D functional response and diffusion Holling Ⅱ [J]. Mathematical Computer Modelling, 2005, 42:31-44.
  • 9Du Y H, Lou Y. Qualitative behaviour of positive solutions of a predator-prey model: Effects of saturation [J]. Proceedings of the Royal Society of Edinburgh, 2001, 131: 321-349.

共引文献19

同被引文献14

  • 1Gyllstr M M, Hansson L.-A.Dormancy in freshwater zooplankton:Induction,termination and the importance of benthicpelagic coupling[J].Aquat Sci,2004,66:274-295.
  • 2Masataka Kuwamura ,Takefumi Nakazawa,Toshiyuki Ogawa.A minimum model of prey-predator system with dormancy of predators and the paradox with dormancy of predators and the paradox of enrichment[J].J Math Biol,2009,58:459-479.
  • 3Lou Y,Ni W-M. Diffusion, self-diffusion and cross-diffusion[J].J Differential Equations,1996,131:79-131.
  • 4Wu J H. Global bifurcation of coexistence state for the competition model in the chemostat[J].Nonlinear Analysis,2000,39 (7):817-835.
  • 5Ni W M, Tang M X.Turing patterns in the Lengyel-Epstein system for the CIMA reaction[J].Transactions of the American Mathematical Society,2005,357( 10):3953-3969.
  • 6钟承奎,范先令,陈文yuan.非线性泛函分析引论[M].兰州:兰州大学出版社,2004.
  • 7KO W,RYU K. Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge[J]. Journal of Differential Equations,2006,231 : 534-550.
  • 8JANG J ,NI W M,TANG M X. Global bifurcation and structure of turing patterns in the 1-D Lengyel-Epstein model [J]. Journal of Dynamics and Differential Equations, 2004,16(2):297-320.
  • 9WU J H. Coexistence states for cooperative model with diffusion[J]. Computers and Mathematics with Application, 2002,43:1 277-1 290.
  • 10SMOLLER J. Shock waves and reaction diffusion equations[M]. New York:Springer-Verlag, 1999:167-180.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部