期刊文献+

弯曲纳米棒中的电子输运

Electron transport in curved nanorod
下载PDF
导出
摘要 研究了弯曲纳米棒中的电子输运行为.应用Serret-Frenet移动坐标系,借助微分几何运算,将问题转化为线性纳米棒中电子在有效势中的散射.在小曲率情况下,采用一级波恩近似,得到了散射矩阵和总透射系数的解析表达式.结果表明,透射系数随入射电子能量呈现振荡行为.透射系数与曲率的4次幂成正比,表明曲率显著影响电子输运性质.这对纳米力学和纳米电子器件研究有潜在的应用价值. Electron transport in a curved nanorod is studied. By setting up a Serret-Frenet parallel moving coordinate system, the differential geometry is employed to transform the problem into electron scattering via an effective potential defined along the linear nanorod. In the small curvature condition, the first order Born approximation is used to obtain the analytical expression of the transmission coefficient. The result shows that the transmission coefficient oscillates with the variation of the electron energy, which clearly indicates a quantum interference due to bending. The transmission coefficient is proportional to the 4-th order power of the curvature, which implies that the curvature has a very strong influence on the electron transport. The result has potential application in nano-mechanics and nano-electron devices.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期33-37,共5页 Journal of Shaanxi Normal University:Natural Science Edition
基金 教育部重点科研基金资助项目(108118)
关键词 介观体系 电子输运 弯曲纳米棒 量子干涉 mesoscopic system electron transport curved nanorod quantum interference
  • 相关文献

参考文献20

  • 1Fournier J B, Galatola P. Critical fluctuations of tense fluid membrane tubule[J].Physical Review Letters. 2007, 98(10): 018 103-018 106.
  • 2Okamoto M, Uda T, Takayanagi K. Quantum conductance of helical nanowires[J]. Physical Review (B), 2001, 64:033 303-03 307.
  • 3Wu H A. Molecular dynamics simulation of loading rate and surface effects on the elastic bending behavior of metal nanorod [J]. Computational Materials Science, 2004, 31: 287-291.
  • 4吴恒安,倪向贵,王宇,王秀喜.金属纳米棒弯曲力学行为的分子动力学模拟[J].物理学报,2002,51(7):1412-1415. 被引量:10
  • 5Olendski O, Mikhailovska L. Localized-mode evolution in a curved planar waveguide with combined Dirichlet and Neumann boundary conditions[J]. Physical Review (E), 2003, 67:056 625-056 636.
  • 6Gravesena J, Willatzenb M, Quantum eigenstates of curved nanowire structures [J]. Physica (B), 2006, 371: 112-119.
  • 7Shevchenko S N, Kolesnichenko Yu A, Effect of curvature on conductance of the quantum wire [J]. Physics (E), 2002, 14: 177-179.
  • 8杨谋,周光辉,史小川.金属纳米线弯曲形状引起的量子电导相干振荡(英文)[J].湖南师范大学自然科学学报,2002,25(4):38-41. 被引量:2
  • 9Huang W Q, Chen K Q, Shuai Z. Acoustie-phonon transmission and thermal conductance in a double-bend quantum waveguide[J]. Journal of Applied Physics, 2005, 98:093 524-09 353.
  • 10Orellana P A, Pacheco M. Photon-assisted transport in a carbon nanotube calculated using Green's function techniques [J ]. Physical Review (B), 2007, 75 115 427-115 432.

二级参考文献167

  • 1WEES B.Quantized conductance ofpoint contacts in a two-dimensional electron gas[J].Phys Rev Lett,1988,60:848-851.
  • 2KRANS J M,RUITENBEEK J M,FISUN V V.The signature of conductance quantisation inmetallic point contacts[J]. Nature,1995,375:767-768.
  • 3BAOLIN WANG,SHUANGYE YIN,GUANGHOU WANG.Novel structure and properties of goldnanowires[J].Phys Rev Lett,2001,86:2046-2050.
  • 4ZAGOSKIN A M.Driving-voltage-induced force oscillations in metal quantum-pointcontacts[J].Phys Rev,1998,B58;15827-15831.
  • 5BOGACHEK E N,SCHERBACOV A V,LANDMAN U.Thermpower of quantum nanowire in a magneticfield[J].Phys Rev,1996,B54;R11094-11097.
  • 6BLOM S.Free-electronmodel for mesoscopic force fluctuations in nanowires[J].PhysRev,1998,B57:8830-8833.
  • 7STAFFORD C A,BAERSWYL D,BüRKI J.Jellium model of metallic nanocohesion[J].PhysRev Lett,1997,79:2863-2866.
  • 8MA ZS,XIE X C.Higher harmonic generation in a mesoscopic conductor[J].PhysRev,2001,B63;125310-5.
  • 9HEREMANS J,THRUSH C M,LIN Y M.Transport properties of antimong nanowires[J].PhysRev,2001,B63:085408-8.
  • 10GRINCWAJG A,GORELIK L Y,KLEINER V Z.Photoconductance oscillations in atwo-dimensional quantum point contact[J].Phys Rev,1995,B52:12168-12178.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部