期刊文献+

利用多基链计算椭圆曲线标量乘的高效算法 被引量:7

Efficient Scalar Multiplication Algorithm Using Multibase Chains
下载PDF
导出
摘要 椭圆曲线标量乘是椭圆曲线密码体制中最耗时的运算,多基链作为双基链的一个推广,具有标量表示长度更短、非零比特数目更少的特点,非常适宜用于椭圆曲线标量乘的快速计算。该文给出了新的五倍点公式,同时以2、3和5作为基底,给出了一个利用多基链计算椭圆曲线标量乘的高效算法。由于多基数表示的高度冗余性,该算法能够抵抗某些边信道攻击,与常用的标准倍点加和非邻接形标量乘算法相比,该算法的运算量更少。 In the elliptic curve cryptosystem, Scalar multiplication is the most important and computationally costliest operation, thus it becomes one of hot topics. As a generalization of double base chains, multibase chains are very,suitable for efficient computation of scalar multiplications of elliptic curves because of shorter representation length and less Hamming weight. In this paper, the formulas for computing the 5-fold of an elliptic curve point P are given. Using 2, 3 and 5 as bases of the multibase chains, an efficient scalar multiplication algorithm of elliptic curve is proposed. This algorithm can offer some protections against some side-channel attacks for the huge redundancy of the multibase representation and cost less compared with stand double-and-add and nonadjacent form for scalar multiplications.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2008年第6期868-871,共4页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(6043027) 福建省青年科技人才创建新基金(2008F3110) 福建省自然科学基金(2006J0045)
关键词 椭圆曲线 多基链 公钥密码体制 标量乘 elliptic curve multibase chain public key cryptosystem scalar multiplication
  • 相关文献

参考文献10

  • 1KOBLITZ N. Elliptic curve cryptosystems[J]. Mathematics of Computation, 1987, 48(177): 203-209.
  • 2MILLER V S. Uses of elliptic curves in cryptography[C]// CRYPTO'85: Proceedings of Advances in Cryptology. Springer Berlin: Heidelberg Press, 1986, 218: 417-428.
  • 3DIMITROV V S, JULLIEN G A. Loading the bases: a new number representation with applications[J]. IEEE Circuits and Systems Magazine, 2003, 3(2): 6-23.
  • 4DIMITROV V S, IMBERT L, MISHRA P K. Fast elliptic curve point multiplication using double-base chains [DB/OL]. [2007-04-10]. http://eprint.iacr.org/2005/069.
  • 5AVANZI R, DIMITROV V S, DOCILE C et al. Extending scalar multiplication using double bases[C]//ASIA CRYPT'06: Proceedings of Advances in Cryptolo gy-ASIACRYPT 2006. Springer Berlin: Heidelberg Press, 2006, 4284: 130-144.
  • 6MISHRA P K, DIMITROV V S. Efficient quintuple formulas for elliptic curves and efficient scalar multiplication using multibase number representation [DB/OL]. [2007-04-10]. http://eprint.iacr.org/2007/040.
  • 7EISENTRAGER K, LAUTER K, MONTGOMERY P L. Fast elliptic curve arithmetic and improved Weil pairing evaluation[C]//CT-RSA 2003: Proceedings of Topics in Cryptology. Springer Berlin: Heidelberg Press, 2003, 2612: 343-354.
  • 8CIET M, JOYE M, LAUTER K et al. Trading inversions for multiplications in elliptic curve cryptography[J]. Designs, codes and cryptography, 2006, 39: 189-206.
  • 9DIMITROV V S, IMBERT L, MISHRA P K. Efficient and secure curve point multiplication using double-base chains[C]//Asiacrypt 2005: Proceedings of Advances in Cryptology-ASIACRYPT 2005. Springer Berlin: Heidelberg Press, 2005, LNCS 3788: 59-78.
  • 10KOCHER C, JAFFE J, JUN B. Differential power analysis[C]//Crypto'99: Proceedings of Advances in Cryptology. Springer Berlin: Heidelberg Press, 1999, 1666: 388-397.

同被引文献48

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部