期刊文献+

一种多样性引导的两阶段多目标微粒群算法

A diversity-guided two stages multi-objective particle swarm optimizer
下载PDF
导出
摘要 针对现有多目标微粒群算法存在容易陷于局部极值、收敛速度慢、函数评价次数多等不足,提出了一种多样性引导的2阶段多目标微粒群算法,依据种群多样性动态使用不同的变异方式,采用了2种不同的领导微粒选择方式,基于Pareto占优排序和拥挤距离来控制外部档案中解的数目。针对多个多目标测试函数进行了实验,并与其他文献的方法进行了比较,验证了算法的有效性。 Multi-objective particle swarm optimizers are often trapped in local optima, converge slowly and cost more function evaluations. Therefore, a diversity-guided two-stage MOPSO (DTSPSO) was proposed. DTSPSO dynamically selects different mutation operators according to current population diversity and divides into two stages according to its ways of selecting leaders. In addition, Pareto dominance ranking and crowding distance were used to fix the size of the external archive. Experiments were carried out on several classical benchmark functions for multi-objective optimization problems and the results show that DTSPSO is effective in solving various multi-objective optimization problems.
作者 郑向伟 刘弘
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2008年第11期5-10,共6页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(60743010)
关键词 多目标优化 微粒群算法 多样性 领导微粒 multi-objective optimization particle swarm optimizer diversity leader particle
  • 相关文献

参考文献15

  • 1KENNEDY J, Eberhart RC. Particle swarm optimization[C]// IEEE International Conference on Neural Networks, Perth, Australia: IEEE Press, 1995 : 1942-1948.
  • 2MOORE J, CHAPMAN R. Application of particle swarm to multi-objective optimization[R]. Auburn, Alabama, US: Department of Computer Science and Software Engineering, Auburn University, 1999.
  • 3REYES-SIERRA M, COELLO CAC. Multi-objective particle swarm optimizers: a survey of the state-of-the-art[J]. Int'l Journal of Computational Intelligence Research, 2006, 2 (3) : 287-308.
  • 4HU X H, EBERHART R. Multi-objective optimization using dynamic neighborhood particle swarm optimization [ C]//Congress on Evolutionary Computation, Piscataway: IEEE Service Center, 2002: 1677-1681.
  • 5FIELDSEND J E, SINGH S. A multi-objective algorithm based upon particle swarm optimization, an efficient data structure and turbulence [ C ]//The U.K. Workshop on Computational Intelligence, Birmingham, UK: IEEE Service Center, 2002: 37-44.
  • 6COELLO CAC, PULIDO G T, LECHUGA M S. Handling multiple objectives with particle swam1 optimization [ J ]. IEEE Trans. on Evolutionary Computation, 2004, 8(3): 256-279.
  • 7MOSTAGHIM S, TEICH J. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) [C]// The IEEE Swarm Intelligence Syrup, Indiana, USA: IEEE Service Center, 2003: 26-33.
  • 8HO S L, YANG S Y, NI G Z, et al. A particle swarm optimization based method for multiobjective design optimizations[J]. IEEE Trans. on Magnetics, 2005, 41(5) : 1756-1759.
  • 9RIGET J, VESTERSTORM J S. A diversity-guided particle swarm optimizer-the arPSO [ R ]. Technical report, EVAlife, Department of Computer Science, Denmark: University of Aarhus, 2002.
  • 10PANT M, RADHA T, SINGH V P. A simple diversity guided particle swarm optimization[ C]//The IEEE Congress on Evolutionary Computation, Singapore: IEEE Press, 2007 : 3294- 3299.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部