期刊文献+

挖掘关联规则中Apriori算法的一种改进 被引量:13

An improved Apriori algorithm for mining association rules
下载PDF
导出
摘要 针对制约Apriori算法效率的瓶颈问题,提出了一种对Apriori算法改进的策略,该策略利用二维数组标志位进行事务压缩和利用项集有序性进行项目压缩相结合。该算法减少连接次数以及扫描数据库的次数从而缩短数据库扫描时间,利用项集有序性改进判断是否进行连接的策略,并利用标志位变化逐步消除无用事务,从而实现了事务压缩和项目压缩,同时减少了判断时间。实验结果表明,经过优化了的Apriori算法在运行效率上有一定的提高。 For the bottlenecks of the Apriori algorithm, which restrict the efficiency of the Apriori algorithm, an optimized method was presented, which can take advantage of a two-dimensional array marker bit to achieve transaction reduction in association with taking advantage of order item to achieve item reduction. Reducing the times of joining as well as the number of scannings of the database will shorten the scan time. This algorithm takes advantage of order itemsets to improve the strategy, which is used to determine whether to join or not. And it removes useless transactions step by the step based on the transformation of a marker bit to reduce the number of transactions and items, while reducing the time of judgment. The results of an experiment show that the improved algorithm is more efficient.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2008年第11期67-71,共5页 Journal of Shandong University(Natural Science)
关键词 关联规则 APRIORI算法 二维数组 事务压缩 项集有序 项目压缩 association rule Apriori algorithm two-dimensional array transaction reduction order itemsets item reduction
  • 相关文献

参考文献11

  • 1AGRWAL R, SRIKAN R. Fast algorithms for mining association hales in large databases[ C]//Proceedings of the Twentieth International Conference on Very Large Databases, Santiago, Chile: [s.n. ] 1994, 9: 487-499.
  • 2PARK J S, CHEN M S, YU P S. An effective hash-based algorithm for mining association rules [ C ]//Proceeding of the ACM SIGMOD International Conference on Management of Data. New York: ACM, 1995: 175-186.
  • 3PARK J S, CHEN M S, YU P S. Efficient parallel data mining of association rules[ C]//Proceeding of the ACM SIGMOD International Conference on Management of Data. New York: ACM, 1995: 31-36.
  • 4SAVASERE A, OMIECINSKI E, NAVATHE S. An efficient algorithm for mining association rules in large databases[ C]// Proceedings of the 21st International Conference on Very Large Database. New York: ACM, 1995: 432-443.
  • 5TOLVONEN H. Sampling large databases for association rules [ C ]//Proceedings of the 22nd International Conference on Very Large Database. Bombay, India: [s. n.], 1996: 134- 145.
  • 6BRIN S, MOTWANI R, ULLMAN J D, et al. Dynamic itemset counting and implication rules for market basked data [ C ]// Proceeding of the ACM SIGMOD International Conference on Management of Data. New York: ACM, 1997 : 255-264.
  • 7曾万聃,周绪波,戴勃,常桂然,李春平.关联规则挖掘的矩阵算法[J].计算机工程,2006,32(2):45-47. 被引量:33
  • 8HanJiawei MichelineKamber 范明 孟小峰译.数据挖掘概念和技术[M].北京:机械工业出版社,2001..
  • 9张毅驰,朱巧明.改进的关联规则算法及其应用[J].计算机系统应用,2007,16(10):80-84. 被引量:10
  • 10徐章艳,刘美玲,张师超,卢景丽,区玉明.Apriori算法的三种优化方法[J].计算机工程与应用,2004,40(36):190-192. 被引量:71

二级参考文献25

  • 1曾万聃,周绪波,戴勃,常桂然,李春平.关联规则挖掘的矩阵算法[J].计算机工程,2006,32(2):45-47. 被引量:33
  • 2彭仪普,熊拥军.关联规则挖掘AprioriTid算法优化研究[J].计算机工程,2006,32(5):55-57. 被引量:24
  • 3Agarwal R, Imielinski T, Swami A. Mining Associaiton Rules Between Sots of Items in Large Databttscs [A]. In: Proceeding of 1993 SIGMOD International Conterence on Management of Data [C].New York: ACM Press, 1993:207-216.
  • 4Park J S, Chen M S, Yu P S. Using a Hash-based Method with Transaction Trimming for Mining Associations Rules[J]. IEEE Transactions on Knowledge and Data Engineering, 1997, (9):813-825.
  • 5Agarwal R, Agarwal C. A Tree Projection Algorithm for Generation of Frequent Itemsets[J]. Journal of Parallel and Distributed Compuling,2001, (Special Issue on High Performance Data Mining): 1-23.
  • 6Han Jiawei, Pei Ham Yin Yiwen. Mining Frequent Patterns Without Candidate Generation[A]. In: Proceeding of 2000 ACM SIGMOID International Conference on Management of Data [C]. New York:ACM Press, 2000: 1-12.
  • 7HanJiawei KamberM.Data Mining:Concepts and Techniques[M].北京:高等教育出版社,2001..
  • 8Berry M, Linoff G. Data Mining Techniques[M]. John Wiler, 1997.
  • 9HandD MannilarH SmythP.数据挖掘原理[M].北京:机械工业出版社,2003..
  • 10R Agrawal ,T Imielinski,A Swami.Mining Association Rules between Sets of Items in Large Database[C].In:Proceedings of the ACM SIGMOD Conference on Management of Data,1993:207~216

共引文献162

同被引文献71

引证文献13

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部