期刊文献+

伪压缩映像修正迭代序列的强收敛性 被引量:3

Strong convergence of a modified iterative process for pseudocontractive mappings
下载PDF
导出
摘要 在严格凸自反的实Banach空间的框架下,用一种变形的隐迭代格式xt=tf(xt)+uxt+vTxt,研究一闭凸集合K上的伪压缩映像的不动点问题,当满足适当条件,且t→0,u→/0时,{xt}强收敛至T的一个不动点,并且此点也是一类变分不等式的解. A new iterative process was introduced for pseudocontractive mappings, xt = tf( xt ) + uxt + vTxt, for t, u, v in [ 0, 1 ], on a closed convex subset of strictly convex and reflexive Banach spaces. It was showed that under appropriate conditions, when t→0, u→0, {xt } would converge strongly to a fixed point of T, which would be also the solution of a variational inequality.
出处 《浙江师范大学学报(自然科学版)》 CAS 2008年第4期397-400,共4页 Journal of Zhejiang Normal University:Natural Sciences
基金 国家自然科学基金资助项目(10771141)
关键词 隐迭代序列 不动点 强收敛 变分不等式 implicit iterative process fixed point strong convergence variational inequality
  • 相关文献

参考文献7

  • 1黄建锋,王元恒.关于一种严格伪压缩映象Mann迭代序列的强收敛性[J].浙江师范大学学报(自然科学版),2006,29(4):378-381. 被引量:4
  • 2Xu Hongkun. Viscosity approximation methods for nonexpansive mappings[J]. J Math Anal Appl,2004,298 ( 1 ) :279-291.
  • 3DeimLiwg K. Zeros of accretive operators[J]. Manuscripta Mathematica, 1974,13 (4) :365-374.
  • 4Takahashi W, Ueda Y. On Reich's strong convergence theorems for resolvents of accretive operators[J]. J Math Anal Appl, 1984,104 (2) :546-553.
  • 5Song Yisheng. Chen Rudong. Convergence theorems of iterative algorithms for continuous pseudneontraetive mappings[ J ]. Nonlinear Analysis 2007,67 ( 2 ) :486-497.
  • 6Megginson R E. An Introduction to Banach Space Theory[M]. New York:Springer-Verlag, 1998.
  • 7徐卫,王元恒,张涛.非扩张映象和逆-强单调映象关于扰动集合的稳定性[J].浙江师范大学学报(自然科学版),2007,30(4):399-405. 被引量:2

二级参考文献26

  • 1Osilike M O.Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps[J].J Math Anal Appl,2004,294(1):73-81.
  • 2Osilike M O,Udomene A.Demiclosedness priciple and convergence results for strictly psedocontractive mappings of Browder-Petryshyn type[J].J Math Anal Appl,2001,256(2):431-445.
  • 3Halpern B.Fixed points of nonexpanding maps[J].Bull Amer Math Soc,1967,73:957-961.
  • 4Reich S.Weak convergence theorems for nonexpansive mappings in Banach spaces[J].J Math Anal Appl,1979,67 (2):274-281.
  • 5Genel A,Lindenstrass J.An example concerning fixed points[J].Israel J Math,1975,22 (1):81-86.
  • 6Nakajo K,Takahashi W.Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups[J].J Math Anal Appl,2003,279(2):372-379.
  • 7Deimling K.Zeros of accretive operators[J].Manuscripta Math,1974,13:365-374.
  • 8Childume C E,Udomene A.Strong convergence theorems for uniformly continuous pseudocontractive maps[J].Math Anal Appl,2006,323(1):88-89.
  • 9Browder F E.Nonlinear monotone operators and convex sets in Banach spaces[J].Bull Amer Math Soc,1965,71:780-785.
  • 10Browder F E.The fixed point theory of multi-valued mappings in topoligical vector spaces[J].Math Ann,1968,177(4):281-301.

共引文献3

同被引文献38

  • 1孔德洲.Banach空间广义平衡问题和一簇拟φ-非扩张映象的强收敛定理[J].应用泛函分析学报,2013,15(3):253-258. 被引量:2
  • 2黄建锋,王元恒.关于一种严格伪压缩映象Mann迭代序列的强收敛性[J].浙江师范大学学报(自然科学版),2006,29(4):378-381. 被引量:4
  • 3姚永红,陈汝栋,周海云.非扩张映象不动点的迭代算法[J].数学学报(中文版),2007,50(1):139-144. 被引量:6
  • 4Halpern B. Fixed points of nonexpanding maps[ J]. Bull Amer Math Soc, 1967,73:957-961.
  • 5Lions P L. Approximation de points fixes de constractions [ J ]. CRAcad Sci Paris Ser A, 1977,284 ( 21 ) : 1357-1359.
  • 6Wittmann R. Approximation of fixed points of nonexpansive mappings[ J]. Arch Math, 1992,58 (5) :486-491.
  • 7Reich S. Some problems and results in fixed points theory[J]. Contemp Math,1983,21:179-187.
  • 8Xu Hongkun. Iterative algorithms for nonlinear operators[ J]. J London Math Soc ,2002,66( 1 ) :240-256.
  • 9Kim T H, Xu Hongkun. Strong convergence of modified Mann iterations [ J ]. Nonlinear Anal,2005,61 ( 2 ) :51-60.
  • 10Suzuki T. Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals[ J]. J Math Anal Appl,2005,305( 1 ) :227-239.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部