期刊文献+

产生有限维可积系的一个新途径 被引量:3

NEW APPROACH TO GENERATION OF FINITE DIMENSIONAL INTEGRABLE SYSTEMS
下载PDF
导出
摘要 本文以Kaup-Newel特征值问题为例,由其伴随表示给出一种新的约束。 In this paper, Finite dimensional integrable systems are obtained by using adjoint representation of eigenvalue problem and Kaup Newell eigenvalue problem is an illustrative example.
作者 杜殿楼
出处 《郑州大学学报(自然科学版)》 CAS 1997年第1期1-7,共7页 Journal of Zhengzhou University (Natural Science)
基金 国家自然科学基金
关键词 伴随表示 可积系 特征值问题 有限维可积系 adjoint representation constraint integrable system
  • 相关文献

同被引文献20

  • 1曹策问.AKNS族的Lax方程组的非线性化[J].中国科学(A辑),1989,20(7):701-707. 被引量:35
  • 2Du Dianlou,Can Cewen. The Lie-Poisson representation of nonlinearized eigenvalue problem of the Kac-van Moerbeke hierarchy[J]. Phys Lett A, 2001,278(4): 209-224.
  • 3Du Dianlou. Complex form,reduction and Lie-Poisson structure for the nonlinearized spectral problem of the Heisenberg hierarchy[J]. Physica A, 2002,303 (3-4): 439-456.
  • 4Cao Cewen, Geng Xianguo. Classical integrable systems generated through nonlinearization of eigenvalue problems [A]. Gu C. Nonlinear ,research reports in physics[C]. Berlin :Springer, 1989.68-78.
  • 5Cao Cewen,Wu Yongtang,Geng Xianguo. Relation between the Kadometsev-Petviashvili equation and the confocal involutive system[J]. J Math Phys ,1998,40(8): 3 948-3 970.
  • 6Olver P J. Applications of Lie Groups to differential equations (2ed)[M]. Berlin:Springer,1993.
  • 7Du Dianlou,Cao Cewen,Wu Yongtang. The nonlinearized eigenvalue problem of the Toda hierarchy in the Lie-Poisson framework[J]. Physica A,2000,285(3-4) :332-350.
  • 8Flaschka H. Relations between Infinite-dimensional and Finite-dimensional Isospectral Equations. in Proc RIMS Sym. On a Nonlinear Integrable Systems, Kyoto Japan, World Sci Pr Singapore. 1983.219-239.
  • 9Ablowitz M J, Segur H. Solitons and the Inverse Scatting Transform. SIAM Studies in Appl Math, Philadelphia, 1981.
  • 10扎哈罗夫V E,诺维科夫S P,马纳科夫S V等著,彭启才译.孤立子理论.北京:科学出版社,1985.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部