期刊文献+

基于连接函数的整合风险度量研究 被引量:6

A Study of Integrated Risk Measurement Based on Copula
下载PDF
导出
摘要 本文利用连接函数(Copula)解决整合风险管理中不同类型风险的联合分布建模问题,提出了基于连接函数的整合风险度量Copula-VaR及其蒙特卡洛模拟算法;以深圳发展银行和上海浦东发展银行为研究对象,将Copula-VaR与N-VaR和Add-VaR这两种业界常用的近似整合风险度量方法进行了实证比较分析,发现:与Copula-VaR相比,N-VaR和Add-VaR存在高估风险的倾向,而其主要原因则是由于N-VaR和Add-VaR对信用收益率与市场收益率之间的相关结构进行了不符合实际的假设。 This article uses Copula to solve the problem of joint distribution modeling of variant risks in integrated risk management, puts forward a method of integrated risk measurement based on Copula: Copula-VaR and its Monte Carlo simulation algorithm. Using Shenzhen Development Bank and Shanghai Pudong Development Bank as research objects, this article compares Copula-VaR with approximate integrated risk measurements N-VaR and Add-VaR empirically, finds that N-VaR and Add-VaR tend to overestimate risk and the main reason is that they do reasonless assumption about correlation structure between credit return and market return.
作者 侯成琪 王频
出处 《统计研究》 CSSCI 北大核心 2008年第11期72-80,共9页 Statistical Research
基金 国家自然科学基金项目“基于期望收益率时变性和背景风险的战略资产配置理论研究”(70801046)资助
关键词 整合风险度量 联合分布 VAR 连接函数 Integrated risk measurement Joint distribution VaR Copula
  • 相关文献

参考文献12

  • 1A. Mikes. Enterprise Risk Management in Action[ M]. London School of Economics and Politucal Science, 2005.
  • 2J. Rosenberg and T. Sehuermann. A General Approach to Integrated Risk Management with Skewed, Fat-tailed Risks [ J]. Journal of Financial Economics, 2006(3) : 569 - 614.
  • 3张尧庭.连接函数(copula)技术与金融风险分析[J].统计研究,2002,19(4):48-51. 被引量:297
  • 4P. Embrechts, A. McNeil, Dependence in Risk Management: Management: Value at Risk and Cambridge University Press, 2002 D. Straumann. Correlation and Properties and Pitfalls[C]. In: Risk Beyond, edited by M. Dempster,
  • 5P. Embrechts, F. Lindskog and A. with Copulas and Applications to Risk tailed Distributions in Finance, edited 2002. McNeil. Modelling Dependence Mmanagement [ C ]. In : Heavyby T. Rachev, North-Holland,
  • 6O. Brendan and S. Taqqu. Financial Risk and Heavy Tails [ C ]. In Heavy-tailed Distributions in Finance, edited by T. Rachev, North-Holland, 2002.
  • 7B. Nelsen. An Introduction to Copulas[M]. Springer, 1999.
  • 8A. Thierry and C. Kharoubi. Dependence Structure and Risk Measure [J]. Journal of Business, 2003(3) :411 - 438.
  • 9P. Kupiec. Techniques for Verifying the Accuracy of Risk Measurement Models[J]. Journal of Derivatives, 1995(3) :73 - 84.
  • 10F. Christoffersen. Evaluating Interval Forecasts [J]. International Economic Review, 1998(4) :841 - 862.

二级参考文献3

  • 1[1]Nelsen, R. B (1998), An Introduction to Copulas, Lectures Notes in Statistics, 139,Springer Verlag, New York.
  • 2[2]Embrechts, P., Lindskog, F. And McNeil, A. (2001), Modelling Dependence with Copulas and Applications to Risk Management. Dept. of Math. CH-8092, Zürich, Switzerland.
  • 3[3]Bouyé, E. (2000), Copulas for Finance, A Reading Guide and Some Applications. City University Business School,London.

共引文献296

同被引文献63

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部