期刊文献+

免疫克隆算法调节参数的非线性控制器设计

A nonlinear controller design using an immune clonal selection algorithm
下载PDF
导出
摘要 以模糊神经网络(FNN)为基础,结合误差线性反馈构造了一种新型的非线性控制器.非线性控制器的设计难点在于参数的确定问题,用传统的算法对控制器参数寻优时容易陷入局部收敛,难于取得可靠的参数,因此提出一种改进的免疫克隆选择算法,用于确定非线性控制器的最优参数.倒立摆的仿真实验表明改进的免疫克隆算法在控制器参数寻优中取得良好的效果,所设计的控制器具有很强的非线性适应能力. A nonlinear controller based on a fuzzy neural network (FNN) and linear error feedback was constructed. But the difficulty in nonlinear controller design lies in identification of the parameters being controlled. Optimization of the parameters may lead to a local convergence if traditional methods are used, resulting in unreliable operation. We therefore developed a modified immune clonal selection algorithm (m-ICSA) to optimize parameters of the nonlinear controller. A simulation with an inverted pendulum demonstrated that the m-ICSA effectively optimizes controller parameters and the design has strong nonlinear adaptive ability.
出处 《智能系统学报》 2008年第5期408-415,共8页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(60773065)
关键词 改进的免疫克隆选择算法 非线性控制器 参数寻优 m-ICSA nonlinear controller parameter optimization
  • 相关文献

参考文献11

  • 1[1]WANG Lixin.Design and analysis of fuzzy identifiers of nonlinear dynamic systems[J].IEEE Transactions on Automatic Control,1995,40(1):11-23.
  • 2[4]BURNET F M.The clonal selection theory of acquired immunity[M].Cambridge,UK:Cambridge Univ Press,1959:45-140.
  • 3[5]De CASTRO L N,TIMMIS J.An artificial immune network for multimodal function optimization[C]// Proceedings of the 2002 Congress on Evolutionary Computation.Honol-ulu,HI,USA,2002:699-704.
  • 4[6]De CASTRO L N,Von ZUBEN F J.Learning and optimization using the clonal selecting principle[J].IEEE Transactions on Evolutionary Computation,2002,6(3):239-251.
  • 5[7]De CASTRO LN,VON ZUBEN F J.Data mining:a heuristic approach[M].Sydney,Idea Group Publishing,Univ New South Wales,2001:24-70.
  • 6[8]TAN K C,GOH K,MAMUN A A.An evolutionary artificial immune system for multiobjective optimization[J].European Journal of Operational Research,2008,187:371-392.
  • 7[10]CAMPELO F,GUIMARAES F G,IGARASHI H,et al.A modified immune network algorithm for multimodal electromagnetic problems[J].IEEE Transactions on Magnetics,2006,42(4):1111-1114.
  • 8[11]FUKUDA T,MORI K,TSUKIAMA M.Artificial immune systems and their applications[M].[S.L.],Spring-Verlag,1999:210-229.
  • 9[12]CHUN J S,JUNG H K.HAHN S Y.A study on comparison of optimization performances between immune algorithm and other heuristic algorithm[J].IEEE Transactions on Magnetics,1998,34(5):2972-2975.
  • 10[13]CUI X,LI M,FANG T.Study of population diversity of multi-objective evolutionary algorithm based on immune and entropy principles[C]//Proceedings of the 2001 Congress on Evolutionary Computation.Seoul,South Korea,2001:1316-1321.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部