期刊文献+

基于局部SVM分类器的表情识别方法(英文) 被引量:3

Facial expression recognition based on local SVM classifiers
下载PDF
导出
摘要 提出了一种新的视频人脸表情识别方法.该方法将识别过程分成人脸表情特征提取和分类2个部分,首先采用基于点跟踪的活动形状模型(ASM)从视频人脸中提取人脸表情几何特征;然后,采用一种新的局部支撑向量机分类器对表情进行分类.在Cohn-Kanade数据库上对KNN、SVM、KNN-SVM和LSVM 4种分类器的比较实验结果验证了所提出方法的有效性. This paper presents a novel technique developed for the identification of facial expressions in video sources. The method uses two steps: facial expression feature extraction and expression classification. First we used an active shape model (ASM) based on a facial point tracking system to extract the geometric features of facial expressions in videos. Then a new type of local support vector machine (LSVM) was created to classify the facial expressions. Four different classifiers using KNN, SVM, KNN-SVM, and LSVM were compared with the new LSVM. The results on the Cohn-Kanade database showed the effectiveness of our method.
出处 《智能系统学报》 2008年第5期455-466,共12页 CAAI Transactions on Intelligent Systems
基金 National High Technology Research and Development Program (863) of China(2007AA01Z334) National Natural Science Foundation of China(69903006,60373065,0721002) New Century Excellent Talents in University(NCET-04-0460)
关键词 人脸表情识别 局部支撑向量机 活动形状模型 几何特征 facial expression recognition local SVM active shape model geometry feature
  • 相关文献

参考文献24

  • 1[1]FRANCO L,TREVES A.A neural network facial expression recognition system using unsupervised local processing[C]// Proceeding of the 2nd International Symposium on Image and Signal Processing and Analysis (ISPA2001).Pula,Croatia,2001:628-632.
  • 2[2]LYONS M,AKAMATSU S.Coding facial expressions with gabor wavelets[C]//Proceeding of the Third IEEE International Conference on Automatic Face and Gesture Recognition.Nara,Japan:IEEE Computer Society,1998:454-459.
  • 3[3]BASSILI J.Emotion recognition:the role of facial movement and the relative importance of upper and lower areas of the face[J].J Personality Social Psychol,1979,37:2049-2059.
  • 4[4]FASEL B,LUETTIN J.Recognition of asymmetric facial action unit activities and intensities[C]//Proceeding of 15th International Conference on Pattern Recognition (ICPR 2000).Barcelona,Spain,2000:1100-1103.
  • 5[5]TIAN Y L,KANADE T,COHN J F.Recognizing action units for facial expression analysis[J].IEEE Transaction on PAMI,2001,23(2):97-115.
  • 6[6]BARTLETT M S,LITTLEWORT G,FRANK M G,LAINSCSEK C,FASEL I,MOVELLAN J.Recognizing facial expression:Machine learning and application to spontaneous behavior[C]// Proceeding of Conference on Computer Vision and Pattern Recognition (CVPR 2005).San Diego,CA,USA:IEEE Computer Society,2005:568-573.
  • 7[7]COHEN I,SEVE N,COZMAN G G,CIRELO M C,HUANG T S.Learning Bayesian network classifier for facial expression recognition using both labeled and unlabeled data[C]// Proceeding of Conference on Computer Vision and Pattern Recognition (CVPR 2003).Madison,Wisconsin,USA:IEEE Computer Society,2003:595-601.
  • 8[8]LIEN J J,KANADE T,COHN J F,LI C C.Detection,tracking,and classification of action units in facial expression[J].Journal of Robotics and Autonomous Systems,2000,31:131-146.
  • 9[9]LISETTI C L,SCHIANO D J.Automatic facial expression interpretation:where human-computer interaction,artificial intelligence and cognitive science intersect[J].Pragmatics & Cognition,2000,8:185-235.
  • 10[10]ZHANG H,BERG A C,MAIRE M,MALIK J.SVM-KNN:Discriminative nearest neighbor classification for visual category recognition[C]// Proceeding of Conference on Computer Vision and Pattern Recognition (CVPR 2006).New York,USA:IEEE Computer Society,2006:2126-2136.

同被引文献29

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部