期刊文献+

常用制冷工质稠密流体的黏度推算方法 被引量:1

VISCOSITY PREDICTION OF VISCOUS FLUID OF COMMON REFRIGERANT
下载PDF
导出
摘要 本文通过关联无量纲化剩余黏度与对比密度的关系,提出了一种推算常用制冷工质稠密流体黏度的维里型黏度状态方程。应用该方程只需已知该工质的临界参数、分子量和偏心因子即可完成计算,使得迁移性质的计算在热力学面上和平衡性质的计算保持了完整的一致性。本文通过上述方法计算了9种常用制冷工质的液相黏度,与实验数据比较显示,总平均偏差为2.36%,最大偏差为27.6%。 In this study, a Virial-type viscosity Equation of State (EOS) used for predicting the viscosity of the viscous fluid of common refrigerant was established via relating the dimensionless residual viscosity with the reduced density. Adopting this equation, only the critical parameters, molecular weight and eccentric factor of the refrigerant are needed to conduct the calculation. Therefore, on the thermodynamic surface, there is an integrated concordance between the calculation of transport property and that of equilibrium property. According to this new equation, the viscosities of nine common refrigerants in liquid phase were calculated. Compared with the experimental data, the total average deviation is 2.36% and the maximum deviation is 27.6%.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2008年第12期2003-2006,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金项目资助(No.50376049 No.50521604) 教育部"新世纪优秀人才支持计划"(No.NCET-04-0925)
关键词 维里型黏度状态方程 黏度推算 制冷工质 virial-type viscosity equation of state viscosity prediction refrigerant
  • 相关文献

参考文献23

  • 1Chapman S, Cowling T G. The Mathematical Theory of Non-Uniform Gases. New York: Cambridge, 1939
  • 2Cohen Y, Sandler S I. The Viscosity and Thermal Conductivity of Simple Dense Gases. Ind. Eng. Chem. Fundam., 1980, 19(2): 186-188
  • 3Hanley H J M, Haynes W M, McCarty R D. The Viscosity and Thermal Conductivity Coefficients for Dense Gaseous and Liquid Methane. J. Phys. Chem. Ref. Data, 1977, 6(2): 597-610
  • 4Sheng W, Chen G J, Lu H C. Predication of Transport Properties of Dense Gases and Liquids by Peng- Robinson(PR) Equation of State. Int. J. of Thermophysics, 1989, 10(1): 133-144
  • 5Sheng W, Lu B C Y. Calculation of Shear Viscosity of Mixtures by Means of an Equation of State, Advances in Cryogenic Engineering, 1990, 35(Pt.B): 1533-1540
  • 6Jossi J A, Stiel L I, Thodos G. The Viscosity of Non-Polar Substances in the Dense Gaseous and Liquid Regions. J. AIChE, 1962, 8(59): 59-62
  • 7Stiel L I, Thodos G. The Viscosity of Polar Substances in the Dense Gaseous And Liquid Regions. J. AIChE, 1964, 10(2): 275-277
  • 8Stiel L I, Thodos G. Thermal Conductivity of Nonpolar Substances in the Dense Gaseous and Liquid Regions. AIChE J., 1964, 10(1): 26-30
  • 9He M G, Liu Z G, Yin J M. New Equation of State for Transport Properties: Calculation for the Thermal Conductivity and the Viscosity of Halogenated Hydrocarbon Refrigerants. Fluid Phase Equlibria, 2002, 201(2): 309-320
  • 10Heckenberger T, Stephan K. Cubic Equation of State for Transport Properties: an Equation for the Thermal Conductivity of Oxygen. Int. J. of Thermophysics, 1990, 11(6): 1011-1023

二级参考文献40

  • 1阴建民,何茂刚,刘咸定,刘志刚.共沸与近共沸混合工质CFCs替代物的热力学分析[J].工程热物理学报,1994,15(2):137-140. 被引量:14
  • 2侯虞钧 张彬 等.马丁-侯状态方程向液相发展[J].化工学报,1981,1:9-9.
  • 3Atsushl Saltoh, Shinsuke Nakagawa, Harukl Sato, et al. Isobarie heat capacity data data for liquid HFC-134a[J]. Journal of Chem & Eng Data, 1990, 35(2) : 107-110.
  • 4Shinsuke Nakagawa, Haruki Sato, Koichl Watanabe. Isobaric heat capacity data for liquid HCFC-123 (CHCl2CF3, 2, 2-Difluoroethane and 1, 1-trifluoro -ethane)[J]. Journal of Chem & Eng Data, 1991, 36 (2) : 156-159.
  • 5Shinsuke Nakagawa, Tastuji Hori, Haruki Sato, et al. Isobaric heat capacity data for liquid 1-ehloro-1, 1-diflu- oroethane and 1,1-Difluoroethane [ J ]. Journal of Chem Eng Data, 1993, 38(1) : 70-74.
  • 6Mitsuteru Yomo, Haruki Sato, Koichi Watanabe. Measurements of isobaric heat capacity for liquid difluoromethane ( HFC-32 ) [ J ]. High Temperatures · High Pressures, 1994, 26(3): 267-272.
  • 7Gartner J, Wirbser H. Flow-calorimetric massic heat capacities and Joule-Thomson coefficients of CHF2Cl (R22) at pressures up to 15 MPa and temperatures between 300 K and 450 K[ J]. J Chem Thermodynamics, 1997, 29(11): 1 205-1 208.
  • 8Ernst G, Giirtner J, Wirbser H. Flow-calorimetric massic heat capacities at low pressures of CF3Cl and CHF3 (R13 and R23 ) and of C6H14 ( perfluoro-2-mthylpentane ) ; vapour pressure curve and critical data of C6H14 [ J ]. J Chem Thermodynamics, 1997, 29(10): 1 125-1 128.
  • 9Ernst G, Keil B, Wirbser H. Flow-calorimetric results for the massic heat capacity cp and the Joule-Thomson coefficient of CH4, of (0.85CH4 + 0.15 C2H4 ) , and of a mixture similar to natural gas [ J ]. J Chem Thermodynamics, 2001, 33(6) : 601-613.
  • 10Ernst G, Wirbser H. Flow-calorimetric massic heat capacity % of (0.5CFCl3 + 0.5 CF2ClCFCl2 ) at pressures up 30 MPa and temperatures between 288 K and 503 K [ J ]. J Chem Thermodynamics, 2002, 34 (5) : 573-578.

共引文献1

同被引文献16

  • 1Haghighi B, Oghaz N M, Najafi M. Pair Interaction Potential Energy Function for H-2-H-2 from the Viscosity of Normal Hydrogen in the Limit of Zero Density [J]. Asian J. Chem., 2003, 15(3): 1355 1366.
  • 2Goharshadi E K, Abbaspour M. Determination of Potential Energy Function of Methane via the Inversion of Reduced Viscosity Collision Integrals at Zero Pressure [J]. Fluid Phase Equilibr., 2003, 212(1/2): 53-65.
  • 3Millat J, Dymond J H, Castro C A N. Transport Properties of Fluids: Their Correlation, Prediction and Estimation [M]. New York: Cambridge University Press, 1996: 228-247.
  • 4Lemmon E W, Jacobsen R T. Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air [J]. Int. J. Thermophys., 2004, 25(1): 21-67.
  • 5Vogel E. The Viscosity of Gaseous Propane and Its Initial Density Dependence [J]. Int. J. Thermophys., 1995, 16(6): 1335-1351.
  • 6He Maogang, Liu Zhigang, Yin Jianmin. New Equation of State for Transport Properties Calculation for the Thermal conductivity & the viscosity of halogenated hydrocarbon refrigerants [J]. Fluid Phase Equilibr., 2002, 201(2): 309-320.
  • 7Poling B, Prausnitz J, Connell J. The Properties of Gases and Liquids [M]. New York: McGraw-Hill Professional Publishing, 2000:9.1- 9.5.
  • 8Bird R B, Transport Phenomena [M]. New York: John Wiley & Sons, 2002:20- 21.
  • 9Chung T H, Loyd L L, Kenneth E. Starling. Applications of Kinetic Gas Theories & Multiparameter Correlation for Prediction of Dilute Gas Viscosity & Thermal Conductivity [J]. Ind. Eng. Chem., 1984, 23(1): 8-13.
  • 10Chung T H, Ajlan M, Lloyd L L, et al. Generalized Multi-parameter Correlation for Nonpolar and Polar Fluid Transport Properties [J]. Ind. Eng. Chem. Res., 1988, 27(4): 671-679.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部