期刊文献+

覆盖对策的核心稳定性条件

CONDITIONS ON CORE STABILITY OF COVERING GAMES
原文传递
导出
摘要 覆盖对策是建立在最优集合覆盖问题基础上的合作对策模型.研究覆盖对策的核心稳定性.基于线性规划对偶理论,给出了一定条件下覆盖对策核心的刻划及其具有稳定核心的充要条件,并将结果应用到若干具体的对策模型中. This paper focuses on the core stability of covering games, which arise from minimum set cover problems. Based on duality theory of linear programming, a characterization of the core is given and a sufficient and necessary condition is proposed on the core stability of a covering game under KSnig Condition. These results can be applied to some concrete covering games.
作者 方奇志
出处 《系统科学与数学》 CSCD 北大核心 2008年第11期1323-1330,共8页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10771200) 新世纪优秀人才支持计划(05-0598)资助项目.
关键词 集合覆盖 核心 稳定集 核心稳定性 对偶定理. Set cover, core, stable set, core stability, LP duality.
  • 相关文献

参考文献11

  • 1Von Neumann J and Morgenstern O. Theory of Games and Economic Behaviour. Princeton, Princeton University Press, 1944.
  • 2Lucas W F. Von Neumann -Morgenstern Stable Set. Handbook of Game Theory, Elsevier, Amsterdam, 1992.
  • 3Solymosi T and Raghavan T E S. Assignment games with stable cores. International Journal of Game Theory, 2001, 30: 177-185.
  • 4Bitenhader T and Okamoto Y. Core stability of minimum coloring games. Mathematics of Operations Research, 2006, 31: 418-431.
  • 5Deng X, Ibaraki T and Nagamochi H. Algorithmic aspects of the core of combinatorial optimization games. Mathematics of Operations Research, 1999, 24: 751-766.
  • 6Berge C. Graphs and Hypergraphs. North-Holland, Amsterdam, 1973.
  • 7Lovasz L and Plummer M D. Matching Theory. North Holland, Elsevier Science Publishers, 1986.
  • 8Schrijver A. Theory of Linear Integer Programming. John Wiley, Chichester, 1986.
  • 9Reinhard D. Graph Theory. Springer-Verlag, New York, Inc., 2000.
  • 10Fang Q and Kong L. Core stability of vertex cover games. Lecture Notes in Computer Science 4858 (WINE 2007), Springer-Verlag, Berlin Heidelberg, 2007, 482-490.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部