期刊文献+

不同取样方向AZ31B镁合金应变率效应 被引量:1

Research on Strain Rate Effects of AZ31B Magnesium Alloy of Different Orientation Samples
下载PDF
导出
摘要 采用分离式Hopkinson压杆获得了冲击压缩方向与热轧态AZ31B镁合金板材法向分别成90°、45°及0°的动态应力—应变曲线,利用光学显微镜及透射电子显微镜对微观组织演化过程进行了分析。结果表明:应变率约为1 200 s-1,压缩方向与板面法向成90°时,孪晶的面积分数随应变量的增大逐渐增加,孪生是主要变形机制,其曲线为凹型;压缩方向与板面法向成45°及0°时,其塑性变形以位错滑移为主,曲线形状分别为近似线型和凸型;应变率约为2 800 s-1,压缩方向与板面法向成90°时,孪晶面积分数迅速增加,大多数晶粒取向发生了改变,有利于滑移,其曲线由较低应变率的凹形变为凸型。 Dynamic mechanical properties of the samples with compression axis 90°, 45°or 0° from the normal direction of the AZ31B plate were tested using split Hopkinson bar. The microstructure evolutions were analyzed using optical microscope and transmission electron microscope. The analyzed results indicate that the twinned area fraction increases gradually with the increment of the strain, the twinning is main deformation mechanism, its stress-strain curve is concave, for the sample with 90° angle between compression axis and normal direction at a strain rate 1200 s^-1 ; the main plastic deformations are dislocation and slip, their stress-strain curves are approximate line and convex respectively, for the samples with the angles of 45°, 0° between compression axis and normal direction at a strain rate of 1 200 s^-1 ; the curves .change from concave to convex for 90° sample at a strain rate of 2 800 s^-1 , due to rapidly increasing twinned area fraction, which changes the orientations of most grains and makes slipping more easily.
出处 《兵工学报》 EI CAS CSCD 北大核心 2008年第11期1347-1351,共5页 Acta Armamentarii
关键词 金属材料 AZ31B镁合金 微观组织演化 位错滑移 孪晶面积分数 metallic material AZ31B magnesium alloy microstructure evolutions dislocation slip twinned area fraction
  • 相关文献

参考文献14

  • 1Bohlen J, Agnew S R, Nurnberq M R, et al. The texture and anisotropy of magnesium-zinc-rare earth alloy sheet[J]. Acta Materialia, 2007, 55(6) : 2101 - 2112.
  • 2Kleiner S, Uqqowitzer P J. Mechanical anisotropy of extruded Mg-6 % A1-196 Zn alloy[ J ]. Materials Science and Engineering A, 2004, 379(1-2): 258-263.
  • 3Agnew S R, Jain A. Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet[J]. Materials Science and Engineering A, 2007, 462(1- 2): 29- 36.
  • 4Barnett M R, Nave M D, Bettles C J. Deformation micro structures and textures of some cold rolled Mg alloys[J]. Materials Science and Engineering A, 2004, 386(1 - 2) : 205 - 211.
  • 5Koiehi I, watanabe H, Mukai T. High strain rate deformation behavior of an AZ91 magnesium alloy at elevated temperatures [J]. Materials Letters, 2005, 59:1511 - 1515.
  • 6Yokoyama T. Impact tensile stress-strain characteristics of wrought magnesium alloys[J]. Strain, 2003, 39(4) : 167 - 175.
  • 7Klimanek P, Potzsch A. Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates[J ]. Materials Science and Engineering A, 2002, 324(1): 145- 150.
  • 8Mukai T, Yamanoi M, Watanabe H, et al. Effect of grain refinement on tensile ductility in ZK60 magnesium under dynamic loading[J]. Materials Trans, 2001, 42(7): 1177- 1181.
  • 9Shotaro Morozumi, Michio Kikuchi, Hideo Yoshinaga, et al. Electron microscope observation in and around { 10 12 } twins in magnesium[J]. Trans JI M, 1976,17(3) : 158 - 164.
  • 10Lan Jiang, Jonas J J, Luo A A, et al. Influence of {1012} extension twinning on the flow behavior of AZ31 Mg alloy[J]. Material Science and Engineering A, 2007, 445(1) : 302 - 309.

同被引文献14

  • 1晋芳伟,任忠鸣,任维丽,邓康,钟云波.强梯度磁场下金属熔体中析出相晶粒迁移的动力学研究[J].物理学报,2007,56(7):3851-3860. 被引量:4
  • 2Du X H, Wang Q M, Belegundu U, et al. Crystal orientation de- pendence of piezoelectric properties of single crystal barium titanate [J]. Materials Letters, 1999, 40(3) : 109 - 113.
  • 3Mikelson A E, Karklin Y K. Control of crystallization processes by means of magnetic fields [J]. Journal of Crystal Growth, 1981, 52(2) :524 -529.
  • 4Fujiwara M, Fukui M, Tanimoto Y. Magnetic orientation of benzo- phenone crystals in fields up to 80.0 kOe [ J ]. The Journal of Physical Chemistry B, 1999, 103 (14) : 2627 - 2630.
  • 5Sazaki G, Yoshida E, Komatsu H, et al. Effects of a magnetic field on the nucleation and growth of protein crystals [ J]. Journal of Crystal Growth, 1997, 173 ( 1 ) : 231 - 234.
  • 6Wang C J, Wang Q, Wang Z Y, et al. Phase alignment and crys- tal orientation of AI3 Ni in A1 - Ni alloy by imposition of a uniform high magnetic field [ J]. Journal of Crystal Growth, 2008, 310 (6) : 1256 -1263.
  • 7Morikawa H, Sassa K, Asai S. Control of precipitating phase a- lignment and crystal orientation by imposition of a high magnetic field [ J]. Materials Transactions JIM, 1998, 39(8) : 814 - 818.
  • 8Ferreira P J, Liu H B, Vander Sande J B. A model for the texture development of high-Tc superconductors under an elevated magnet- ic fleld [J]. Journal of Materials Research, 1999, 14(7) : 2751 - 2763.
  • 9Wu C Y, Li S Q, Sassa K, et al. Theoretical analysis on crystal alignment of feeble magnetic materials under high magnetic field [ J ]. Materials Transctions JIM, 2005, 46 (6) : 1311 - 1317.
  • 10Lou C S, Wang Q, Wang C J, et al. Migration and rotation of TiA13 particles in an Al-melt solidified under high magnetic field conditions [ J ]. Journal of Alloy and Compouds, 2009,472 ( 1 ) : 225 - 229.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部