期刊文献+

基于Gabor感知多成份字典的图像稀疏表示算法研究 被引量:43

Sparse Representations of Images by a Multi-component Gabor Perception Dictionary
下载PDF
导出
摘要 如何设计合适的能够匹配各层面几何结构的图像稀疏表示过完备字典,进而形成对图像的稀疏分解是当前研究者关注的热点问题.根据图像的几何结构特性,从人类视觉系统特性出发,建立了匹配各层面图像结构的Gabor感知多成份字典,进而提出一种高效的基于匹配追踪的图像稀疏分解算法.实验结果表明:Gabor感知多成份字典具有对图像中平滑、边缘与纹理结构的自适应性,与Anisotropic refinement-Gaussian(AR-Gauss)混合字典相比以较少的原子实现了对图像更为高效的稀疏分解. It is currently a hot research topic that how to design an effective over-complete dictionary matching various geometric structures of images to provide sparse representation of images. A multi-component Gabor perception dictionary matching various image structures is constructed in terms of geometric properties of the local structures and the perception character of HVS. Furthermore, an effective algorithm based on the matching pursuit method is proposed to obtain sparse decomposition of images with our dictionary. The experimental results indicate that the Gabor multi-component perception dictionary can adaptively provide a precise and complete characterization of local geometry structures, such as plain, edge and texture in images. In comparison with the anisotropic refinement-Gaussian (AR-Gauss) mixed dictionary, our dictionary has a much sparser representation of images.
出处 《自动化学报》 EI CSCD 北大核心 2008年第11期1379-1387,共9页 Acta Automatica Sinica
基金 国家高技术研究发展计划(863计划)(2007AA12E100) 国家自然科学基金(60672074) 江苏省自然科学基金(BK2006569) 中国博士后科学基金(20060390285) 江苏省博士后科学基金(200601005B) 教育部高校博士点专项科研基金(M200606018)资助~~
关键词 稀疏表示 视觉感知 几何结构 Gabor感知多成份字典 匹配追踪 Sparse representation visual perception, geometrical structure, multi-component Gabor perception dictionary, matching pursuit
  • 相关文献

参考文献16

  • 1Vinje W E, Gallant J L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 2000, 287(5456): 1273-1276
  • 2Olshausen B A, Field D J. Emergency of simple-cell receptive field properties by learning a sparse coding for natural images. Nature, 1996, 381(6583): 607-609
  • 3Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: a strategy employed by VI? Visual Research, 1997, 37(33): 3311-3325
  • 4Mallat S G, Zhang Z F. Matching pursuits with timefrequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415
  • 5Davis G M, Mallat S G, Zhang Z F. Adaptive time-frequency decompositions. SPIE Journal of Optical Engineering, 1994, 33(7): 2183-2191
  • 6Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing, 1999, 20(1): 33-61
  • 7Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS: are-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616
  • 8Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-598
  • 9Mancera L, Portilla J. Lo-norm-based sparse representation through alternate projections. In: Proceedings of IEEE International Conference on Image Processing. Washington D. C., USA: IEEE, 2006. 2089-2092
  • 10Bergeau F, Malt S. Match pursuit of images. In: Proceedings of the 1995 International Conference on Image Processing. Washington D. C., USA: IEEE, 1995. 53

同被引文献534

引证文献43

二级引证文献473

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部