摘要
主要研究了由可精确测量元控制的弱可换的伪效应代数中可精确测量元。证明了可精确测量元控制的弱可换的伪效应代数中可精确测量元是弱可换的伪正交代数代数。讨论了弱可换的伪效应代数与BZ-偏序集之间的关系。讨论了弱可换的伪效应代数商代数中可精确测量元与正规Riesz理想之间的关系。
In this paper,the set of sharp elements in sharply dominating weak commutative pseudoeffect algebras is studied.It's proved that the set of sharp elements in sharply dominating weak commutative pseudoeffect algebras are weak commutative pseudoorthoalgebras.At the same time,the relationships between weak commutative pseudoeffect algebras and BZ-posets are discussed. At last,it's proved that the equivalent class of sharp element is sharp element in the quotient algebra of a weak commutative pseudoeffect algebra gotten by normal Riesz ideals.
出处
《计算机工程与应用》
CSCD
北大核心
2008年第34期23-25,共3页
Computer Engineering and Applications
基金
国家自然科学基金No.10571112~~