期刊文献+

SVM和ANN在网络安全风险评估中的比较研究 被引量:3

Comparative study of network security risk evaluation based on SVM and ANN
下载PDF
导出
摘要 支持向量机和人工神经网络是人工智能方法的两个分支,详细介绍了支持向量机和人工神经网络原理。建立了网络安全评估指标体系,将支持向量机和人工神经网络同时应用于网络安全风险评估的过程中,通过实例比较了两者的评估效果,结果表明了支持向量机在小样本情况下分类正确率普遍高于人工神经网络,具有较好的分类能力和泛化能力;同时在训练时间上也有绝对的优势。实践证实了支持向量机用于网络安全风险评估的有效性和优越性。 Support Vector Machine (SVM) and Artificial Neural Networks (ANN) are two branches of artificial intelligence, the principles of SVM and ANN are introduced in detail in this paper.The network security evaluation index system is established. SVM and ANN are applied to network security risk assessment process at the same time.Though the example,it indicates that the class exactness of SVM is higher than ANN under the conditions of limited training samples,acquires better class ability and generalization ability,it has the absolute superiority on training time than ANN.The validity and superiority of SVM on network security risk evaluation is approved.
机构地区 华北电力大学
出处 《计算机工程与应用》 CSCD 北大核心 2008年第34期116-118,128,共4页 Computer Engineering and Applications
关键词 支持向量机 人工神经网络 网络安全 风险评估 Support Vector Machine(SVM) Artificial Neural Network(ANN) network security risk evaluation
  • 相关文献

参考文献10

  • 1Dunstone E S.Image processing using an image approximation neural network[C]//Proceedings IEEE International Conference on Image Processing,ICIP-94, 1994,3:912-916.
  • 2胡求索,钟诚.基于神经网络的软件模块风险性预测模型[J].计算机工程与应用,2007,43(18):106-110. 被引量:10
  • 3陈为化,江全元,曹一家.基于模糊神经网络的电力系统连锁故障风险评估[J].浙江大学学报(工学版),2007,41(6):973-979. 被引量:19
  • 4Vapnik V N.An overview of statistical learning theory[J].IEEE Transactions on Neural Networks, 1999, 10(5) : 988-999.
  • 5Li Zhi-feng.Using support vector machines to enhance the performance of Bayesian face recognition[J].IEEE Transactions on Information Forensics and Security, 2007,2(2) : 174-180.
  • 6王守觉,曲延锋,李卫军,覃鸿.基于仿生模式识别与传统模式识别的人脸识别效果比较研究[J].电子学报,2004,32(7):1057-1061. 被引量:46
  • 7肖龙,方勇,戴宗坤,杨炜,蔡恒.基于模糊神经网络的信息系统风险分析[J].计算机应用研究,2006,23(5):137-139. 被引量:10
  • 8Wang Xiang-ying.Statistical learning theory and state of the art in SVM[C]//The Second IEEE International Conference on Cognitive Informatics, 2003 : 55-59.
  • 9Knerr S.Single-layer learning revisited:A stepwise procedure for building and training a neural network[C]//Fogelman J.Neurocomputing. Algorithms, Architectures and Applications.New York:Springer-Verlag, 1990.
  • 10Bottou L.Comparison of classifier methods:A case study in handwriting digit recognition [C]//the 12th IAPR International Conference on Pattern Recognition, 1994: 77-87.

二级参考文献51

  • 1陈为化,江全元,曹一家,韩祯祥.基于风险理论的复杂电力系统脆弱性评估[J].电网技术,2005,29(4):12-17. 被引量:110
  • 2张辉,周洪祥,何振亚.基于主元分析神经网络的人脸特征提取及识别研究[J].模式识别与人工智能,1996,9(1):52-58. 被引量:10
  • 3W Bledsoe.Man-machine facial recognition[A].Panoramic Research Inc,Palo Alto,CA,1966,Rep PRI:22.
  • 4R Bruneli,T Poggio.Face recognition:features versus templates[J].IEEE Trans.Pattern Analysis and Machine Intelligence,1993,15:1042-1052.
  • 5M Turk,A Pentland.Face recognition using eigenfaces[A].Proc of IEEE Conf On CVPR[C].1991.586-591.
  • 6Yongsheng Gao.Face recognition using line edge map[J].IEEE Trans Pattern Analysis and Machine Intelligence,June 2002,24(6):764-779.
  • 7Shang-Huang Lin,Sun-Yuan Kung,Long-Ji Lin.Face recognition/detection by probabilistic decision-based neural network[J].IEEE Trans On neural networks,Jan.1997,8(1):114-132.
  • 8N Intrator,D Reisfeld,Y Yeshurun.Extraction of facial features for recognition using neural networks[A].Proceedings of International Workshop on Automatic Face and Gesture Recognition[C].1995.260-265.
  • 9P J Phillips.Support vector machines applied to face recognition[A].In Advances in Neural Information Processing Systems 11[C].USA:MIT Press,1998.803-809.
  • 10G D Guo,S Z Li,K L Chan.Face recognition by support vector machines[J].Image and Vision Computing,2001,19(9-10):631-638.

共引文献80

同被引文献18

引证文献3

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部