期刊文献+

扩展正区域的属性约简方法 被引量:4

Reduction algorithm under extended positive region
下载PDF
导出
摘要 扩展了Rough集正区域和边界的定义,在得到信息系统最大正区域的前提下,给出了认知正区域、认知属性核和认知属性约简的定义,并给出了从经典属性约简到认知属性约简转换的高效算法。此外,在认知正区域的定义下,由于决策表的不相容性,在变精度模型下实现属性约简的增量处理是相当困难的,结合提出的高效算法,解决了这一问题。最后,仿真实验说明了算法的有效性。 The definitions of cognitive positive region,cognitive attribute core and cognitive attribute reduction are proposed,by extending the notions of positive region and boundary region in classic rough set theory.Furtherrnore,a high efficient algorithm of transforming classic attribute reduction to cognitive attribute reduction is presented.It is difficult to implement incremental attribute reduction in VPRS model due to the non-tolerance of decision table,which is solved by combining high efficient transforming algorithm.Experimental results illuminate the validity and effectiveness of algorithms.
作者 王俊祥 胡峰
出处 《计算机工程与应用》 CSCD 北大核心 2008年第34期145-148,共4页 Computer Engineering and Applications
关键词 粗集 决策表 认知核属性 认知属性约简 增量式 rough set decision table cognitive core attribute cognitive attribute reduction incremental
  • 相关文献

参考文献14

  • 1Pawlak Z.Rough set[J].International Journal of Computer and Information Sciences, 1982,11 : 341-356.
  • 2王珏,姚一豫,王飞跃.基于Reduct的“规则+例外”学习[J].计算机学报,2005,28(11):1778-1789. 被引量:10
  • 3Ziarko W.Variable precision rough set model[J].Joumal of Computer and System Sciences, 1993,46( 1 ) : 39-59.
  • 4菅利荣,刘思峰.模糊决策表中获取概率规则的扩展VPRS方法[J].控制与决策,2005,20(11):1291-1295. 被引量:3
  • 5Ziarko W,Shan N.Data-based acquisition and incremental modification classfication rules[J].Computational Intelligence, 1995,11 (2) : 357-370.
  • 6Susmaga R.Experiments in incremental computation of reducts[C]//Skowron A,Olkowski L.Rough Sets in Data Mining and Knowledge Discovery.Berlin: Springer-Verlag, 1998.
  • 7刘宗田.属性最小约简的增量式算法[J].电子学报,1999,27(11):96-98. 被引量:43
  • 8Bazan B,Nguyen H S,Nguyen S H.Rough set algorithms in classification problem[C]//Polkowski L,Tsumoto S,Lin T Y.Rough Set Methods and Appiications.Heidelberg:Physica-Verlag,2000:49-88.
  • 9Wang Jue,Wang Ju.Reduction algorithms based on discerniblility matrix: the ordered attributed method[J].Journal of Computer Science and Technlology, 2001,11 (6) : 489-504.
  • 10Hu F,Wang G Y,Huang H,et al.Incremental attribute reduction based on elementary sets[C]//Lecture Notes In Artificial Intelligence 3641 : RSFDGrC2005.Regina, Canada, Heidelberg: Physica-Verlag, 2005 : 185-193.

二级参考文献28

  • 1Su-QingHan JueWang.Reduct and Attribute Order[J].Journal of Computer Science & Technology,2004,19(4):429-449. 被引量:24
  • 2王飞跃,王珏.情报与安全信息学研究的现状与展望[J].中国基础科学,2005,7(2):24-29. 被引量:18
  • 3韩素青,王珏.Second Attribute Algorithm Based on Tree Expression[J].Journal of Computer Science & Technology,2006,21(3):383-392. 被引量:3
  • 4曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 5苗夺谦,博士学位论文,1997年
  • 6Hu X H,Int J Computational Intelligence,1995年,11卷,2期,323页
  • 7Zhai L Y, Khoo L P, Fok S C. Feature Extraction Using Rough Set Theory and Genetic Algorithms - An Application for the Simplification of Product Quality Evaluation[J]. Computers and Industrial Engineering,2002,43(4): 661-676.
  • 8Ananthanarayana V S, Murty M N, Subramanian D K.Tree Structure for Efficient Data Mining Using Rough Sets[J]. Pattern Recognition Letters, 2003, 24: 851-862.
  • 9Shen Q, Chouchoulas A. A Rough-fuzzy Approach for Generating Classification Rules [ J ]. Pattern Recognition, 2002,35(11): 2425-2438.
  • 10Wu W Z, Mi J S, Zhang W X. Generalized Fuzzy Rough Sets[J]. Information Sciences, 2003, 151(1):263-282.

共引文献408

同被引文献24

  • 1王珏,姚一豫,王飞跃.基于Reduct的“规则+例外”学习[J].计算机学报,2005,28(11):1778-1789. 被引量:10
  • 2王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 3Ziarko W.Variable Precision Rough Sets Model[J].Journal of Computer and System Sciences.1993,46(1):39-59.
  • 4Wang Guoyin,Wang Yan.3DM: Domain-oriented Data-driven Data Mining[J].Fundamenta Informaticae,2009,90(4): 395-426.
  • 5Wang Guoyin.RIDAS: A Rough Set-based Intelligent Data Analysis System[C]//Proceedings of ICMLC’02.Beijing,China: IEEE Press,2002.
  • 6PAWLAK Z. Rough sets [ J ]. International Journal Computer Information Science, 1982, 11 (5) : 341-356.
  • 7FENG L, LIT R, RUAN D, et al. A vague-rough set approach for uncertain knowledge acquisition[J]. Knowledge-Based Systems, 2011. doi:10. 1016/j. knosys. 2011.03. 005.
  • 8ZIARKO W. Variable precision rough sets model[ J ]. Journal of Computer and System Sciences, 1993, 46 (1) :39-59.
  • 9WANG G Y, WANG Y. 3DM: Domain-oriented data-driven data mining[J]. Fundamenta Informaticae, 2009, 90(4) :395- 426.
  • 10WANG G Y, ZHENG Z, ZHANG Y. RIDAS-a rough set based intelligent data analysis system[C]// Proceedings of ICM- LC2002. Beiiin. IEEE Press. 2002.. 646-649.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部