期刊文献+

LVQ神经网络在交通事件检测中的应用 被引量:1

Application of LVQ neural network in traffic incident detection
下载PDF
导出
摘要 提出一种基于LVQ神经网络的交通事件检测方法。提取上下游的流量和占有率为特征,LVQ神经网络作为分类器进行交通事件自动检测。LVQ网络结构简单,但却表现出比BP神经网络更强的有效性和鲁棒性。为进一步提高神经网络的泛化能力,采用改进的Boosting算法,进行网络集成。运用Matlab进行了仿真分析,结果表明提出的交通事件检测算法具有良好的检测性能。 A novel method is proposed for traffic incidents detection based on LVQ neural network.The features of flow and occupancy rate are extracted from traffic incidents.Then LVQ neural network is used to classify the traffic incidents.LVQ has a simple network structure, but it is very effective and robust in traffic incidents detection.In order to improve the precision of the LVQ neural network for traffic incidents detection,Boosting algorithm is used to build an integration-neural network.Finally the simulation with Matlah shows the algorithm can get better performance.
作者 朱红斌
出处 《计算机工程与应用》 CSCD 北大核心 2008年第34期213-215,218,共4页 Computer Engineering and Applications
基金 浙江省科技厅项目(No.2005F11008 No.2003F11006)
关键词 BOOSTING算法 LVQ神经网络 分类器 交通事件检测 Boosting algorithm LVQ neural network classify traffic incident detection
  • 相关文献

参考文献7

  • 1王兆华,刘志强.视频检测技术在交通安全中的应用[J].交通运输工程与信息学报,2005,3(3):100-103. 被引量:17
  • 2张良春,夏利民.基于Adaboost方法的高速公路事件检测[J].计算机工程与应用,2007,43(28):230-232. 被引量:4
  • 3Ahmed S A,Cook A R.Application of times-series analysis techniques for freeway incident[J].Transportation Research Record, 1982 (841):19-211.
  • 4Teng Hua-liang,Qi Yi.Application of wavelet technique to freeway incident detection[J].Transportation Research Part C :Emerging Technologies, 2003 : 289-308.
  • 5姜紫峰,刘小坤.基于神经网络的交通事件检测算法[J].西安公路交通大学学报,2000,20(3):67-69. 被引量:73
  • 6Freund Y.Boosting a weak algorithm by majority[J].Information and Computation, 1995 : 121 (2) : 256-285.
  • 7Freund Y,Sehapire R E.A decision-theoretic generalization of on- Line learning and an application to boosting[J].Journal of Computer and System Sciences, 1997,55 ( 1 ) : 119-139.

二级参考文献15

  • 1李进,刘智勇,黄道君.基于视频图像处理技术的道路交通参数检测[J].五邑大学学报(自然科学版),2000,14(3):49-54. 被引量:7
  • 2荆便顺.一段道路交通脉冲响应的识别及其应用[J].信息与控制,1995,24(3):177-182. 被引量:10
  • 3王兆华,刘志强.视频检测技术在交通安全中的应用[J].交通运输工程与信息学报,2005,3(3):100-103. 被引量:17
  • 4Payne H J,Helfenbein E D,Knobel H C.Development and testing of incident detection algorithms:volume 2O research methodology and detailed results[R].Deport No FHWA-RD-76-20 Federal Highway Administration,1976.
  • 5Levin M,Krause G M.Incident detection:a bayesian approach[J].Transportation Research Record,1978(682):52-581.
  • 6Perasnd B,Hall F L.Catastrophe theory and pattern in 30-second freeway traffic data-implication for incident detection[J].Transportation Research 23A,1989 (2):103-113.
  • 7Ahmed S A,Cook A R.Application of times-series analysis techniques for freeway incident[J].Transportation Research Record,1982(841):19-211.
  • 8Teng Hualiang,Qi Yi.Application of wavelet technique to freeway incident detection[J].Transportation Research Part C:Emerging Technologies,2003:289-308.
  • 9Hastie T,Tibshirani R,Friedman J.The elements of statistical learning,data mining,inference,and prediction[M].[S.l.]:Springer Verlag,2004:210-242.
  • 10翟润平,战俊.视频检测技术检测交通流参数的原理与方法[J].中国人民公安大学学报(自然科学版),1998,4(1):24-27. 被引量:19

共引文献89

同被引文献12

  • 1Zhang K, Taylor M A P. Towards universal freeway incident detection algorithms [J]. Transportation Research Part C: Emerging Technologies, 2006, 14(2) 68.
  • 2Cheu R L, Srinivasan D, Teh E T. Support vector machine models for freeway incident detection [ C] //Intelligent Transportation Systems, 2003. Singapore: IEEE, 2003 238- 243.
  • 3Jeong Y S, Castro-Neto M, Jeong M K, et al. A wavelet- based freeway incident detection algorithm with adapting threshold parameters[-J. Transportation Research Part C: Emerging Technologies, 2011, 19 ( 1 ) : 1.
  • 4Yu L, Yu L, Wang J, et al. Back-propagation neural network for traffic incident detection based on fusion of loop detector and probe vehicle dataEC]//Natural Computation, 2008. 1CNC "08. Fourth International Conference on Natural Computation. Jinan: IEEE, 2008 : 116 -120.
  • 5Liu Z, Liu A, Wang C, et al. Evolving neural network using real coded genetic algorithm (GA) for multispectral image classification[-J. Future Generation Computer Systems, 2004, 20:1119.
  • 6Shen C, Wang L, Li Q. Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method[J]. Journal of Materials Processing Technology, 2007, 183:412.
  • 7Ding S, Su C, Yu J. An optimizing BP neural network algorithm based on genetic algorithm[J]. Artificial Intelligence Review, 2011, 36:153.
  • 8Li Z, Lei Q, Kouying X, et at. A novel BP neural network model for traffic prediction of next generation network[C// Natural Computation, Icnc 09, International Conference on Natural Computation. Tianjin:IEEE, 2009:32-38.
  • 9陈君,李聪颖,丁光明.基于BP神经网络的高速公路交通安全评价[J].同济大学学报(自然科学版),2008,36(7):927-931. 被引量:44
  • 10牛世峰,姜桂艳,李红伟,姜卉.基于纵向时间序列的快速路交通事件检测算法[J].哈尔滨工业大学学报,2011,43(2):144-148. 被引量:4

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部