期刊文献+

小波相关特征尺度熵和隐半马尔可夫模型在设备退化状态识别中的应用 被引量:12

Application of Wavelet Correlation Feature Scale Entropy and Hidden Semi-Markov Models to Equipment Degradation State Recognition
下载PDF
导出
摘要 为正确识别机械设备当前所处的退化状态,预防设备进一步退化和故障的发生,提出一种基于小波相关特征尺度熵和隐半马尔可夫模型(Hidden semi-Markov models,HSMM)的设备退化状态识别新方法。对采集到的设备振动信号进行小波相关滤波处理,得到信噪比较高的尺度域小波系数,在此基础上结合信息熵理论提出了沿尺度分布的小波相关特征尺度熵概念。构造信号的小波相关特征尺度熵/矢量,并以此矢量作为HSMM的输入进行训练,建立基于HSMM的机械设备运行状态分类器,从而实现设备退化状态的识别。以滚动轴承为例,对正常和几种故障程度不同的滚动体运行状态进行了识别,同时还与基于小波相关特征尺度熵-HMM的状态识别法进行了比较,试验结果表明该方法能有效识别设备的退化状态。 In order to correctly recognize the current degradation state of equipment for preventing equipment from farther degradating and going wrong, a new method of equipment degradation state recognition based on wavelet correlation feature scale entropy(WCFSE) and HSMM is proposed. The gathered vibration signal of equipment is processed by way of the wavelet transform correlation filter(WTCF). In order to get the high signal-to-noise scales wavelet coefficients, the conception of WCFSE is presented based on the integration of information entropy theory and WTCF, and the WCFSE eigenvectors of signal are constructed. Those WCFSE eigenvectors are inputted to the HSMM for training, and a running state classifier of medical equipment based on HSMM is constructed to recognize the equipment degradation state. Roller bearings are taken as examples, and the running states of a normal rolling element and several rolling elements with different degree of fault are recognized by using the proposed method. This method is compared with the state recognition method based on WCFSE and HMM, experimental results show that this method can effectively recognize the degradation state of equipment.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2008年第11期236-241,247,共7页 Journal of Mechanical Engineering
基金 国家'十一.五'部委预研资助项目(51317050301)
关键词 小波相关特征尺度熵 隐半马尔可夫模型(HSMM) 状态识别 退化状态 Wavelet correlation feature scale entropy Hidden semi-Markov models (HSMM) State recognitionDegradation state
  • 相关文献

参考文献13

  • 1BLANCO S, FIGLIOSA A, QUIAN Q R, et al. Time-frequency analysis of electroencephalogram series(m): Information transfer function and wavelets packets[J]. Physical Review E, 1998, 57(1): 932-940.
  • 2张文炬,苏清祖.车辆变速器故障诊断的Shannon熵研究[J].农业机械学报,2002,33(1):80-83. 被引量:11
  • 3桂中华,韩凤琴.小波包特征熵神经网络在尾水管故障诊断中的应用[J].中国电机工程学报,2005,25(4):99-102. 被引量:59
  • 4何正友,蔡玉梅,钱清泉.小波熵理论及其在电力系统故障检测中的应用研究[J].中国电机工程学报,2005,25(5):38-43. 被引量:188
  • 5印欣运,何永勇,彭志科,褚福磊.小波熵及其在状态趋势分析中的应用[J].振动工程学报,2004,17(2):165-169. 被引量:49
  • 6RABINER L R. A Tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2): 257-286.
  • 7KWAN C, ZHANG X, XU R, et al, A novel approach to fault diagnosis and prognostics[C] // Proceedings ICRA'03, IEEE International Conference on Robotics and Automation 1(3), 2003: 604-609.
  • 8CHINNAM R B, BARUAH P. Autonomous diagnostics and prognostics through competitive learning driven HMM-based clustering[C] // Proc. of the Internal Joint Conf on Neural Networks, 2003. 2 466-2 471.
  • 9CAMCI Fatih, CHINNAM R B. Dynamic Bayesian net-works for machine diagnostics: Hierarchical Hidden Markov models vs. competitive learning[C]//Proc, of the Internal Joint Conf on Neural NetworkS, Montreal, Canada, July 31-August 4, 2005:1 752-1 757.
  • 10DONG M, HE D. Hidden semi-Markov models for machinery health diagnosis and prognosis[J]. Trans. North. Am. Manuf. Res. Inst. SME, 2004, 32: 199-206.

二级参考文献39

  • 1何正友,刘志刚,钱清泉.小波熵理论及其在电力系统中应用的可行性探讨[J].电网技术,2004,28(21):17-21. 被引量:55
  • 2傅祖芸.信息论--基础理论与应用.北京:电子工业出版社,2001;24-25
  • 3张贤达.现代信号处理方法.北京:清华大学出版社,2002:102-103
  • 4杨福生.小波变换的工程分析与应用.北京:科学出版社,1999;33-35
  • 5Svaldo A Rosso, Susana Blanco, et al. Wavelet entropy: a new tool for analysis of short duration brain electrical signals. Journal of Neuroscience Methods,2001; 105: 65-75
  • 6伯晓晨等编著.Matlab工具箱应用指南.北京:电子工业出版社,2000:307-397
  • 7胡昌华.[D].西安:西安电子科技大学出版社,1999.
  • 8Carvalho I S, Heitor M V. Visualization of vortex breakdown in turbulent unconfined jet flows[J]. Journal Optical Diagnostics in Engineering, 1996, 1(2): 22-30.
  • 9Ruprecht Albert, Helmrich Thomas, Scherer Thomas. Simulation of Vortex rope in a turbine draft tube[D]. IAHR Symposium, Lausanne,Switzerland, 2002.
  • 10Kubota T. Cavitation characteristics of force core in the flow of francis turbine[R]. Fuji Electric Co., Review, 1972.

共引文献269

同被引文献126

引证文献12

二级引证文献170

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部