摘要
Description on dynamic behaviours of crack-tips is one of the important foundations to develop a reasonable dynamic fracture criterion. In order to describe the dynamic behaviours of the crack-tip in a material with low viscosity-number, the displacement potential function is assumed as a mathematical expression with exponential singularity. The asymptotic linear differential equations determining plane crack-tip field are established based on the mechanical constitutive model for elastic-viscoplastic materials. According to the conditions of determining solutions for dynamic cracks of mode II, the crack-tip stress fields are numerically simulated based on the asymptotic linear differential equations. Results show the asymptotic linear equations can well describe the crack-tip fields of plane dynamic cracks in the elastic-viscoplastic material with low viscosity-number.
Description on dynamic behaviours of crack-tips is one of the important foundations to develop a reasonable dynamic fracture criterion. In order to describe the dynamic behaviours of the crack-tip in a material with low viscosity-number, the displacement potential function is assumed as a mathematical expression with exponential singularity. The asymptotic linear differential equations determining plane crack-tip field are established based on the mechanical constitutive model for elastic-viscoplastic materials. According to the conditions of determining solutions for dynamic cracks of mode II, the crack-tip stress fields are numerically simulated based on the asymptotic linear differential equations. Results show the asymptotic linear equations can well describe the crack-tip fields of plane dynamic cracks in the elastic-viscoplastic material with low viscosity-number.
基金
supported by China Postdoctoral Science Foundation(No.20080430933)
the Program of Doctor Foundation of Ministry of Education of China(No.20060217010).