期刊文献+

Ag对Al-Cu-Mg合金拉伸延性的影响 被引量:2

Effects of Ag on tensile ductility of Al-Cu-Mg alloy
下载PDF
导出
摘要 通过实验和理论计算研究Al-Cu-Mg-(Ag)合金的拉伸延性。研究表明:Al-Cu-Mg-(Ag)合金的拉伸延性与析出相的体积分数和尺寸有重要关系;析出相体积分数的增加将减小位错的有效滑移距离,从而降低合金的拉伸延性;在时效过程中,合金的拉伸延性首先随着时效时间的延长而降低,达到时效峰值后,拉伸延性随着时效时间的进一步延长而增大;Ag的加入可以提高Al-Cu-Mg合金中析出相的体积分数和强度,但降低合金的拉伸延性;通过控制时效时间虽然可以提高合金的拉伸延性,但同时将降低合金的屈服强度。 The tensile ductility of Al-Cu-Mg-(Ag) alloys was studied through both experiments and theoretical calculations. The results show that the tensile ductility of Al-Cu-Mg-(Ag) alloys has important relationship with the volume fraction and size of the precipitates. The increase of volume fraction of precipitates decreases the effective geometric slip distance, and thus degrades the tensile ductility. During aging, the tensile ductility of Al-Cu-Mg-(Ag) alloys decreases with aging time at the beginning, but increases with increasing aging time after the alloy reaches the peak-aged stage. The Ag addition can improve the volume fraction of the precipitates and thus the tensile ductility, but it will degrade the strength of A1-Cu-Mg-(Ag) alloys. Although the controlling of the aging time can improve the tensile ductility, it will inevitably decrease the yield strength of the alloy.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2008年第11期1971-1976,共6页 The Chinese Journal of Nonferrous Metals
基金 湖南省自然科学基金资助项目(07JJ3117) 中国博士后科学基金资助项目(20070410303)
关键词 Al-Cu-Mg-(Ag)合金 拉伸延性 时效 几何滑移距离 Al-Cu-Mg-(Ag) alloy tensile ductility aging geometric slip distance
  • 相关文献

参考文献17

  • 1HATCH J E. Aluminum: properties and physical metallurgy[M]. Metals Park, OH: ASM Press, 1983: 90.
  • 2POLMEAR I J, CHESTER R J. Abnormal age hardening in an Al-Cu-Mg alloy containing silver and lithium[J]. Scripta Metall, 1989, 23(7): 1213-1217.
  • 3SONG Min, CHEN Kang-hua, HUANG Lan-ping. Effects of Ag addition on mechanical properties and microstructures of Al-8Cu-0.5Mg alloy[J]. Trans Nonferrous Met Soc China, 2006, 16(4): 766-771.
  • 4DESHPANDE N U, GOKHALE A M, DENZER D K, LIU J. Relationship between fracture toughness, fracture path, and microstructure of 7050 aluminum alloy: Part I. Quantitative characterization[J]. Metall Mater Trans A, 1998, 29(4): 1191-1201.
  • 5SONG Min,XIAO Daihong.Effects of Mg and Ag elements on the aging precipitation of binary Al-Cu alloy[J].Science China(Technological Sciences),2006,49(5):582-589. 被引量:4
  • 6XIAO D H, WANG J N, DING D Y, CHEN S P. Effect of Cu content on the mechanical properties of an Al-Cu-Mg-Ag alloy[J] . Journal of Alloys and Compounds, 2002, 343(1/2): 77-81.
  • 7杨海龙,王健农,肖代红,丁冬雁.新型耐热铝合金Al-Cu-Mg-Ag棒材固溶处理温度的研究[J].兵器材料科学与工程,2003,26(1):16-18. 被引量:18
  • 8HAHN G T, ROSENFIELD A R. Metallurgical factors affecting fracture toughness of aluminum alloys[J]. Metall Trans A, 1975, 6: 653-668.
  • 9THOMPSON D S. Metallurgical factors affecting high strength aluminum alloy production[J]. Metall Trans A, 1975, 6: 671-683.
  • 10ASHBY M F. The deformation of plastically non-homogeneous materials[J]. Phil Maga, 1970, 21: 399-424.

二级参考文献29

共引文献24

同被引文献22

  • 1WARNER T. Recently-developed aluminum solutions foraerospace applications [J]. Materials Science Forum, 2006,519/521: 1271-1278.
  • 2SOFYAN B T,RAVIPRASAD K, RINGER S P. Effects ofmicroalloying with Cd and Ag on the precipitation process ofAl-4Cu-0.3Mg (wt%) alloy at 200 °C [J]. Micron, 2001, 32(8):851-856.
  • 3VURAL M,CARO J. Experimental analysis and constitutivemodeling for the newly developed 2139-T8 alloy [J]. MaterialsScience and Engineering A, 2009,520(1/2); 56-65.
  • 4LAM D F, MENZHMER C C, SRIVATSAN T S. A study toevaluate and understand the response of aluminum alloy 2026subjected to tensile deformation [J]. Materials & Design, 2010,31(1): 166-175.
  • 5HUANG Xu-dong, ZHANG Hui, HAN Yi, WU Wen-xiang,CHEN Jiang-hua. Hot deformation behavior of 2026 aluminumalloy during compression at elevated temperature [J]. MaterialsScience and Engineering A, 2010, 527(3): 485-490.
  • 6SAE-AMS4298. Aluminum alloy, Alclad sheet 3.8Cu-1.0Mg-0.3Mn-0.6Zn (Alclad 2056-T3) solution heat treated and coldworked [S].
  • 7CHARAI A, WALTHER T, ALFONSO C, ZAHRA A M,ZAHRA C Y. Coexistence of clusters, GPB zones, S", S' and48(10):2751-2764.
  • 8HUTCHINSON C R, RINGER S P. Precipitation processes inAl-Cu-Mg alloys microalloyed with Si [J]. Physical Metallurgyand Materials Science, 2000, 31(11): 2721-2733.
  • 9WANG S C, STARINK M J. The assessment of GPB II/5*"structures in Al-Cu-Mg alloys [J]. Materials Science andEngineering A, 2004, 386(1/2): 156 163.
  • 10WOLVERTON C. Solute-vacancy binding in aluminum [J]. ActaMater, 2007,55(17): 5867-5872.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部