期刊文献+

仿生矿化法制备可降解羟基磷灰石/氧化细菌纤维素复合材料 被引量:7

Preparation of hydroxyapaite/2,3-dialdehyde bacterial cellulose composite via biomimetic route
原文传递
导出
摘要 细菌纤维素是具有天然纳米网状结构的支架材料,对其进行氧化改性后可获得可调控的降解性能。通过仿生矿化氧化改性的细菌纤维素支架,制备了可降解羟基磷灰石/氧化细菌纤维素复合骨组织工程支架材料。观察并分析了仿生矿化过程氧化细菌纤维素的降解和羟基磷灰石的形成,并通过SEM、EDS、XRD对羟基磷灰石在可降解氧化细菌纤维素支架上沉积进行了表征,矿化7天的羟基磷灰石/氧化细菌纤维素复合材料表面和内部均有磷灰石形成,测得磷灰石的钙磷比为1.75,主要为羟基磷灰石,伴有少量碳羟磷灰石。结果表明,使用仿生矿化法成功获得了一种新型可降解羟基磷灰石/氧化纤维素复合材料支架。 Bacterial cellulose (BC) is a kind of biomedical scaffold with nano network. BC should be oxidized to 2, 3- dialdehyde bacterial cellulose (DABC) by sodium periodate to make BC degradable. By the biomimetic route, the degradable HA/DABC composites for bone tissue engineering were prepared. It was observed that the apatite mineralized on DABC via the biomimetie route together with degradation of DABC by SEM. The HA/DABC composites acquired were proved by SEM, EDS and XRD. There was apatite formation on the surface and inside of the DABC via 7 days biomimetic mineralization. The ratio of calcium phosphate to the apatite is 1.75 by EDS. It was proved to be hydroxyapatite mainly with a little carbonate hydroxyapatite by XRD. It is shown that the degradable HA/DABC composites for bone tissue engineering could be prepared via the biomimetic route.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2008年第6期7-11,共5页 Acta Materiae Compositae Sinica
基金 国家自然科学基金(50673076 50872088 50539060) 天津市科技计划(07ZCKFSF01100) 国家重大基础研究973项目(2007CB936100)
关键词 细菌纤维素 羟基磷灰石 仿生矿化 可降解 bacterial cellulose hydroxyapatite biomimetic degradable
  • 相关文献

参考文献19

  • 1Czaja W, Krystynowicz A, Bielecki S, et al. Microbial cellulose the natural power to heal wounds[J]. Biomaterials, 2006, 27: 145-151.
  • 2Wan Y Z, Hong L, Jia S R, et al. Synthesis and characterization of hydroxyapatite-bacterial cellulose nano composites [J].Composites Science and Technology, 2006, 66 : 1825-1832.
  • 3Hong L, Wang Y L, Jia S R, et al. Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route [J].Material Letters, 2006, 60: 1710-1713.
  • 4Schonfelder U, Abel M, Wiegand C, et al. Influence of selected wound dressing on PMN elastase in chronic wound fluid and their antioxidative potential in vitro[J]. Biomaterials, 2005, 26: 6664-6673.
  • 5Maninder S, Alok R R, Padma V, et al. Potential biosoluble carriers: Bioeompatibility and biodegradability of oxidized cellulose [J]. Biomaterials, Medical Devices, and Artificial Organs, 1979, 7(4): 495-512.
  • 6孙宾,武利顺,梁伯润.医用可吸收氧化纤维素及其氧化体系研究进展[J].中国纺织大学学报,2000,26(4):110-114. 被引量:18
  • 7Calvini P, Conio G, Princi E, et al. Viscometric determination of dialdehyde contentin periodatc oxycellulose II: Topochemistry of oxidation [J]. Cellulose, 2006, 13: 571-579.
  • 8Meng S X, Feng Y Q, Liang Z P, et al. Oxidizing cellulose to 2, 3 dialdehyde cellulose by sodium periodate [J]. Transaction of Tianjin University, 2005, 11(4): 250-254.
  • 9Feng Y H, Li J C, Lin Q, et al. The characterization of bacterial cellulose and dialdehyde celluloses from bacterial cellulose [J]. Key Engineering Materials, 2008, 361/363:563 -566.
  • 10王海宁,万怡灶,李建,张胜男,何芳,黄远,王玉林.纳米纤维组织工程支架及其纳米效应研究进展[J].材料导报,2007,21(4):13-16. 被引量:10

二级参考文献148

共引文献104

同被引文献160

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部