摘要
Nd3+ doped lead zirconate titanate (Pb1-3x/2NdxZr0.52Ti0.48O3, PNZT) nanopowders were prepared through a modified sol-gel method. The effects of Nd3+ doping on the microstructures and properties of PNZT ceramics have been studies. The grain sizes of the perovskite PNZT nanopowders were about 100nm and the lattice distortion of the PNZT increased with the content of Nd3+ up to 9 mol%. The dopant of Nd3+ resulted in the decrease of crystal lattice parameter a and the obvious increase of c and c/a, which effectively improved the sintered densification and activity of the PNZT ceramics. Due to lead vacancies caused by the doping of Nd3+ in the PZT, the piezoelectric constant, electromechanical coupling coefficient and dielectric constant observed were much higher than the monolithic PZT.
Nd^3+ doped lead zirconate titanate (Pb1-3x/2NdxZr0.52Ti0.48O3, PNZT) nanopowders were prepared through a modified sol-gel method. The effects of Nd^3+ doping on the microstructures and properties of PNZT ceramics have been studies. The grain sizes of the perovskite PNZT nanopowders were about 100nm and the lattice distortion of the PNZT increased with the content of Nd^3+ up to 9 mol%. The dopant of Nd^3+ resulted in the decrease of crystal lattice parameter a and the obvious increase of c and c/a, which effectively improved the sintered densification and activity of the PNZT ceramics. Due to lead vacancies caused by the doping of Nd3^+ in the PZT, the piezoelectric constant, electromechanical coupling coefficient and dielectric constant observed were much higher than the monolithic PZT.
基金
Sponsored by the National Natural Science Foundation of China (Grant No.50742007)
the 863 Project (Grant No.2007AA03Z103)
the Scientific Projectof Heilongjiang Province (Grant No.E2007-31)
the Key Lab of Electronic Engineering College of Heilongjiang Province(Grant No.D4D200618)