期刊文献+

大气湍流引起飞机颠簸的理论分析和数值试验 被引量:7

Numerical Simulation and Dynamical Analysis of Atmospheric Turbulence Influence on the Aircraft Bumps
下载PDF
导出
摘要 基于飞机载荷因数变量方程、无量纲的大气垂直运动方程和热力学方程,建立起描述大气湍流和飞机颠簸的湍流模型,并对该模型进行理论分析和数值试验。研究指出,负的理查森数(Ri)对应着静力不稳定和动力不稳定流动,在不稳定大气层结条件下,当Ri<-Ra/PrRe2时,对流状态的大气运动必将由对流转变成湍流,并对运行于其中的飞机产生飞机颠簸。但在稳定大气层结条件下,当理查森数大于临界理查森数时〔Ri>Ric=-Ra/PrRe2〕,正的Richardson数是动力稳定的,非对流状态的大气运动表现为重力波。当理查森数小于临界理查森数〔0<Ri<Ric=-Ra/PrRe2〕时,即存在1个小区0<Ri<Ric,在这里正的理查森数是动力不稳定的,大气运动表现为非周期性的湍流随机运动。非对流状态的大气运动因重力波不稳定碎变为湍流,将产生晴空湍流和晴空飞机颠簸。 Based on the aircraft loading coefficient variable equation, which is obtained from the equation of aircraft dynamics, the aircraft bumps are studied. The results show that the aircraft bumps are mainly determined on the vertical wind velocity of the flow. The mathematical model of atmospheric turbulence and aircraft bumps is derived from the vertical motion equation and the thermodynamic equation, which is based on the non- dimensional Navier-stokes equations. Numerical simulation of the model show that gravity waves may be dynamically unstable and lead to breaking and becoming turbulence. Under the small positive Richardson number and the big Reynolds number conditions, non-periodic solutions in the vertical direction are obtained from the model. However, under the small Reynolds number conditions, non-periodic flow must occur 'as time increases. In addition, Lorenz equation representing cellular convection is derived from the model and solved numerically, and the solutions of Lorenz equation are found to be unstable and the non-periodic flow can be found.
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期887-894,共8页 Periodical of Ocean University of China
基金 国家自然科学基金项目(40775069 604721216)资助
关键词 重力波 大气湍流 对流运动 飞机颠簸 gravity waves atmospheric turbulence convectional unstable aircraft bumps
  • 相关文献

参考文献16

  • 1Baughman E E Jr. Turbulence with a stable lapse rate [J]. Bull Amer Meteor Soc, 1946, 27: 459-462.
  • 2Dutton J A, Panofsky H A. Clear air turbulence, A mystery may be unfolding [J]. Science, 1970, 167: 937-944.
  • 3Phillips D. Buckling up for safety [J ]. Washington Post National Weekly Edition, 1995, 34: 3-9.
  • 4Snyder C, Skarnarock W C, Rotunno R. Frontal dynamics near and following frontal collapse [J]. J Atmos Sci, 1993, 50: 3194-3211.
  • 5Griffiths M, Reeder M J. Stratospheric inertial-gravity waves generated in a numerical model of frontogenesis, Ⅰ: Model solutions [J]. Quart J Roy Meteor Soc, 1996, 122: 1153-1174.
  • 6Guest F M, Reeder M J, Marks C J, et al. Inertial-gravity waves observed in the lower stratosphere over Macquarie Island [ J ]. J Atmos Sci, 2000, 57: 737-752.
  • 7Plougonven R, Teitelbaum H, Zeitlin V. Inertial gravity wave generated by the tropospheric mid-latitude jet as given by the fronts and Atlantic storm-track experiment radio soundings [J]. J Geophys Res, 2003, 108: 4686, doi:10.1029/2003JD003535.
  • 8Nappo C. Gravity wave in the atmosphere [ M ]. [ s.l. ] : Academic Press, 2004: 160.
  • 9Shapiro M A. Further evidence of the mesoscale and turbulence structure of upper level jet stream-frontal zone systems [J ]. Mon Wea Rev, 1978, 106; 1100-1111.
  • 10Shapiro M A. Turbulent mixing within tropopause folds as a mechanism and the troposphere [J]. J Atmos Sci, 1980, 37: 994-1004.

共引文献114

同被引文献58

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部