期刊文献+

SIR传染病模型的混沌跟踪控制 被引量:5

Tracking Control of Chaotic SIR Epidemic Model
下载PDF
导出
摘要 研究了一类疾病传染率受季节因素影响的SIR传染病模型的混沌运动,并采用轨迹跟踪控制方法对传染病模型中的混沌运动进行控制,设计状态反馈控制器,控制系统输出跟踪某一理想状态,使染病者数量渐近趋于零,从而,达到消除疾病的目的.仿真结果表明该方法的有效性. In this paper, chaotic behaviors are investigated in the susceptible-infectedremoved (SIR) epidemic model with seasonal forcing in transmission rate. Furthermore, the tracking control method is used to control chaotic motions in the epidemic model. A feedback controller is designed to achieve tracking of an ideal output. The density of infected individuals can converge to zero, in other words, the disease can disappear. Finally, numerical simulation illustrates that the method is effective.
出处 《生物数学学报》 CSCD 北大核心 2008年第3期457-462,共6页 Journal of Biomathematics
关键词 传染病模型 混沌 跟踪控制 Epidemic model Chaos Tracking control
  • 相关文献

参考文献8

二级参考文献31

  • 1Moghadas S M. Two core group models for sexual transmission of disease[J]. Ecological Modelling, 2002 ,148 (1) : 15-26.
  • 2Hyman J M, Li J. An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations [J]. Math Biosci, 2000 , 167(1): 65-86.
  • 3Ma Z, Liu J P, Li J. Stability analysis for differential infectivity epidemic models [J]. Nonlinear Analysis:Real World Applications, 2003 , 4(5): 841-856.
  • 4Moreira H N, Wang Y. Global stability in an S→I→R→Imodel [J]. SIAM Rev, 1997, 39(3): 496 - 502.
  • 5Zhang X, Chen L S. The periodic solution of a class of epidemic models [J]. Computers and Mathematics with applications, 1999 , 38(3-4): 61-71.
  • 6Anderson R M, May R M. Infectious Diseases of Humans: Dynamics and Control[M]. Oxford: Oxford University Press, 1991.
  • 7Moghadas S M, Gumel A B. Global stability of a two-stage epidemic model with generalized non-linear incidence [J]. Mathematics and computers in simulation, 2002 , 60(1-2): 107-118.
  • 8Kermack W O, McKendrick A G. Contributions to the matlhematical theory of epidemics-Part 1[J].Proc RoySoc London Ser A, 1927,115(3) :700-721.
  • 9Mena-Lorca J, Hethcote H W. Dynamic models of infectious diseases as regulators of population sizes[J]. J Math Biol, 1992,30(4):693-716.
  • 10Li J, Ma Z. Qualitative analysis of SIS epidemic model with vaccination and varying total population size[J]. Math Comput Modelling ,2002,35(11/12) :1235-1243.

共引文献109

同被引文献40

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部