期刊文献+

ENO守恒插值(重映)方法及其在流体计算中的应用 被引量:3

Conservative Interpolation(Remapping) Algorithm Based on ENO Interpolation and Application in Computational Fluid Dynamics
下载PDF
导出
摘要 在ENO(Essentially Non-oscillatory)守恒插值方法的基础上,分析和研究现今流体力学计算中涉及的几类网格技术:重叠网格技术、自适应加密技术和运动网格技术.基于ENO插值多项式构造的重映方法具有良好的守恒性,可以有效保证数据传递中物理量的总体守恒.提出该类守恒插值方法在以上几种网格技术中的一些应用前景,并给出一些数值算例. We summarize conservative remapping algorithms based on ENO (essentially non-oscillatory) interpolation. Three numerical techniques in computational fluid dynamics are discussed: overlapping mesh method, adaptive refinement mesh method and moving mesh method. Physical quantities transfer between meshes. Conservativeness is important, especially in computing shock and contact discontinuity. We propose a remapping algorithm based on ENO which is conservative and accurate in transferring physical quantities between meshes and give numerical examples. It shows that the algorithm has ability of resolving conservative problems with above mesh techniques in computational fluid dynamics.
出处 《计算物理》 EI CSCD 北大核心 2008年第6期641-648,共8页 Chinese Journal of Computational Physics
基金 国家自然科学基金(10601023) 计算物理重点实验室基金(2005) 南京航空航天大学青年创新基金 南京航空航天大学理学院青年创新基金资助项目
关键词 ENO插值多项式 守恒插值 重叠网格 自适应加密 运动网格 essentially non-oscillatory interpolation polynomial conservative interpolation overlapping mesh technique adaptive refinement mesh methods moving mesh methods
  • 相关文献

参考文献4

二级参考文献26

  • 1王永健,赵宁.一类基于ENO插值的守恒重映算法[J].计算物理,2004,21(4):329-334. 被引量:8
  • 2J.F.Thompson, Automatic numerical generation of body-fitted curvilinear coordinate systems for field containing any number of arbitrary two dimensional bodies. J. Comput. Phys. 15(1974) 299-319
  • 3Joe F. Thompson, A Reflection on Grid Generation in the 90s: Trends, Needs, and Influences.
  • 4J.F.Clarke, S.Karni, J.J.Quirk, P.L.Roe, L.G.Simmonds, And E.F.Toro., Numerical Computation of Two-Dimensional Unsteady Detonation Waves in High Energy Solids, J. Comput. Phys.,106(1993), 215-233.
  • 5Berger, M. J., and Oliger, J., Adaptive Mesh Refinement for Hyperbolic Partial Differential Equa tions, J. Comput. Phys., 53 (1984), 484-512.
  • 6Berger, M. J., and Colella, P., Local Adaptive Mesh Refinement for Shock Hydrodynamics, J.Comput. Phys., 82 (1989), 64-84.
  • 7J. K. Dukowicz, Conservative Rezoning (Remapping) for General Quadrilateral Meshes, J. ofComput. Phys. 1:54(1984), 411-424.
  • 8吴子牛.求解定常N-s方程的各项异性笛卡尔网格法研究[A]..第二届青年科技论文报告会论文集[C].北京计算流体力学讨论班,1996..
  • 9Benson D J. Momentum advection on a staggered mesh [J]. J Comput Phys, 1992,100:143.
  • 10Dukowicz J K. Conservative rezoning (remapping) for general quadrilateral meshes[J]. J Comput Phys,1984,54:411~423.

共引文献17

同被引文献21

  • 1王永健,赵宁.一类基于ENO插值的守恒重映算法[J].计算物理,2004,21(4):329-334. 被引量:8
  • 2郭正,谭杰,刘君.振动矩形机翼非线性绕流数值研究[J].国防科技大学学报,2005,27(4):13-17. 被引量:3
  • 3de Zeeuw D , Powell K G. An adaptively refined Cartesianmesh solver for the Euler equations [J]. Journal ofComputational Physics, 1993, 104(1) : 56 -6 8.
  • 4Part-Enander E , Sjogreen B. Conservative and nonconservativeinterpolation between overlapping grids for finitevolume solutions of hyperbolic problems [J]. Computers andFluids, 1994, 23 (3) : 551 -5 7 4 .
  • 5Margolin L G , Shashkov M. Second order sign preservingconservative interpolation ( remapping) on general grids [J].Journal of Computational Physics, 2003 , 184 ( 1 ) : 266 -298.
  • 6徐春光.爆炸流场与建筑物结构作用过程数值模拟算法及应用研究[D] . 长沙:国防科学技术大学,2012.
  • 7Liu J, Bai X , Guo Z, et al. A new method for transferringflow information among meshes [J]. Computational FluidDynamics Journal, 2007, 15(4) : 509 -514.
  • 8Liu X , Qin N , Xia H. Fast dynamic grid deformation basedon Delaunay graph mapping [J]. Journal of ComputationalPhysics, 2006, 211 (2 ) : 405 -4 2 3 .
  • 9吴宗敏.函数的径向基表示[J].数学进展,1998,27(3):202-208. 被引量:37
  • 10罗海山,王晓宏,施安峰.裂缝-孔隙油藏蒸汽辅助重力泄油过程的自适应网格数值计算[J].中国石油大学学报(自然科学版),2011,35(1):140-145. 被引量:6

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部