摘要
给出标准限制加性许瓦兹预条件的变形,并应用当前流行的Newton-Krylov-Schwarz方法,结合该预条件子,求解由二维三温能量方程离散得到的非线性代数方程组,减少收敛所需要的迭代次数和所需的CPU时间.数值实验表明,该方法比标准限制加性许瓦兹预条件方法收敛所需要的迭代次数和CPU时间要少.
We present a variant restricted Additive Schwarz preconditioner and apply Partial-Newton-Krylov-Schwarz algorithm to solve nonlinear algebraic equations of two-dimensional three-temperature systems. Iteration and CPU time for convergence are decreased. Numerical results show efficiency of the method.
出处
《计算物理》
CSCD
北大核心
2008年第6期649-658,共10页
Chinese Journal of Computational Physics
基金
the National Natural Science Foundation of China(granted No.10571017,10701015,60373015 and 60533020)
National Basic Research Program of China(granted No.2005CB221300)
关键词
并行计算
预条件矩阵
迭代求解
加性许瓦兹方法
能量方程
parallel implementation
preconditioner
iterative solution
additive Schwarz method
energy equations