期刊文献+

块三对角线性方程组不完全分解预条件的一种一维区域分解并行化方法 被引量:3

Parallelization of Incomplete Factorization Preconditioning of Block Tridiagonal Linear Systems with 1-D Domain Decomposition
下载PDF
导出
摘要 对块三对角线性方程组,不完全分解是最有效的预条件之一,但它本质上是一个串行计算过程,难以有效并行化.基于一维重叠区域分解,对局部不完全分解得到的上、下三角因子分别各自进行组合,构造一类全局的并行不完全分解型预条件.在具体实现时,给出两种具体途径,其中一种基于所有重叠部分对应分量的交换.之后,在仔细对其中的计算过程进行分析的基础上,给出一种只需要一条网格线上分量通信的实现算法,大大减少了通信量,且通信不随重叠度的增加而增加.这种并行化方法可以应用于块三对角线性方程组的任何不完全分解型预条件.实验结果表明,文中提出的并行化方法普遍优于加性Schwarz并行化方法. Based on one-dimensional domain decomposition with small overlapping, we approximate local lower and upper triangular incomplete factors and combine these factors into an effective approximation for global incomplete factorization preconditioner of coefficient matrix. Two implementations are considered. One is based on exchange of total boundary values of overlapped domain. The other is based on carefully arranged computation process to reduce communication of whole overlapped domain in one line of grid points. The parallelization method can be used to any incomplete factorization preconditioner. Experiments show that it is more efficient than widely-used additive Schwarz technique.
出处 《计算物理》 EI CSCD 北大核心 2008年第6期673-682,共10页 Chinese Journal of Computational Physics
基金 计算物理重点实验室基金 并行与分布处理重点实验室基金 国家自然科学基金(10505030,40505023)资助项目
关键词 线性方程组求解 块三对角矩阵 不完全分解 加性Schwarz 并行算法 solution of linear systems block tridiagonal matrix incomplete factorization additive Schwarz parallel algorithm
  • 相关文献

参考文献4

二级参考文献7

共引文献54

同被引文献18

  • 1吴建平,刘兴平,王正华,戴自换,李晓梅.二维三温能量方程组离散求解的两个新预处理技术[J].计算物理,2005,22(4):283-291. 被引量:7
  • 2李晓梅,莫则尧,胡庆丰,罗晓广,曾泳泓,迟利华.可扩展并行算法的设计与分析[M].北京:国防工业出版社,2001.
  • 3Skamarock W C, Smolarkiewicz P K, Klemp J B.Preconditioned conjugated residual solvers for helmholtz equations in nonhydrostatic models[J].Mon Wea Rev, 1997,125:587-599.
  • 4Thmoas S J, Haeker J P, Stull R B.Spectral preconditioner for nonhydrostatic atmospheric models[J].Mon Wea Rev,2003, 131: 2464-2478.
  • 5Cai X,Casarin M A, Elliott F W,et al.Overlapping Schwarz algorithms for solving helmholtz's equation[J].Contemporary Mathematics, 1998,218 : 437-445.
  • 6Erlangga Y A,Vuik C,Oosterlee C W.On a class of preconditioners for solving the Helmholtz equation[J].Applied Numerical Mathematics, 2004,50: 409-425.
  • 7Saad Y.Iterative methods for sparse linear systems[M].Boston: PWS Publication Corporation, 1996.
  • 8Benzi M.Preconditioning techniques for large linear systems: a survey[J].J Phys Comput, 2002,182 : 418-477.
  • 9Saad Y.ILUT: A dual threshold incomplete ILU preconditioner[J]. Numer Lin Alg Appl, 1994,4 ( 1 ) : 387-402.
  • 10Benzi M. Preconditioning techniques for large linear systems : a survey[J]. Journal of Computational physics, 2002,182 : 418 - All.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部