摘要
分析了直流锅炉运行时各变量之间的耦合关系,针对直流锅炉参数多变、强耦合的特点,提出了一种改进的误差反向传播算法(BP)的神经网络分散解耦方法;仿真及实验结果表明,神经网络分散解耦算法具有很强的自学习功能和自适应解耦能力,是解决多变量和强耦合问题的一种有效途径。
The article analyses the coupling relations among the variables during the once-through boiler running. According to the features of changing parameters and strong coupling of once-through boiler,an improved error back-propagation algorithm (BP) neural network decoupling method is proposed. The results of the simulation and the experiment show that the neural network decoupling algorithm has a strong self-learning function and adaptive decoupling capacity, which is an effective way to solve the multi-variable and the strong coupling problems.
出处
《机械工程与自动化》
2008年第6期147-149,共3页
Mechanical Engineering & Automation
关键词
直流锅炉
解耦控制
BP神经网络
once-through boiler
multivariable system
decoupling control
BP neural network